█████╗ ██████╗ ██╗██████╗ ██████╗ ██████╗ ██╗
██╔══██╗██╔══██╗██║██╔══██╗██╔═══██╗██╔═══██╗██║
███████║██████╔╝██║██████╔╝██║ ██║██║ ██║██║
██╔══██║██╔═══╝ ██║██╔═══╝ ██║ ██║██║ ██║██║
██║ ██║██║ ██║██║ ╚██████╔╝╚██████╔╝███████╗
╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═════╝ ╚═════╝ ╚══════╝
APIPOOL
Intelligent API Marketplace for AI Agents
Agents query by capability. APIPOOL scores providers and routes to the best one.
API marketplace where AI agents discover, evaluate, and consume APIs. 4-pillar intelligence scoring: self-learning, predictive, anomaly detection, contextual understanding. Natural language search, MCP integration, x402 micropayments.
agent-gateway/
AGENTS.md
METHODOLOGY.md
README.md
SKILL.md
components.json
eslint.config.mjs
next.config.ts
openclaw-skills.json
package-lock.json
package.json
postcss.config.mjs
supabase-intelligence.sql
supabase-migration.sql
supabase-x402-migration.sql
tsconfig.json
vercel.json
docs/
BUILD_YOUR_API.md
README.md
SUMMARY.md
agent-creators/
architecture.md
agents/
discovering-apis.md
api-creators/
getting-started.md
api-reference/
capabilities.md
endpoints.md
registry.md
route.md
concepts/
quality-scoring.md
getting-started/
concepts.md
quick-start.md
guides/
consumers.md
methodology.md
providers.md
... (67 more files)
Intelligent API marketplace for AI agents.
Agents query by capability — or plain English. APIPOOL scores providers using 4-pillar intelligence and routes to the best one. No hardcoded endpoints. No guessing.
Live: agent-gateway-zeta.vercel.app
APIPOOL is infrastructure for the AI agent economy. Instead of hardcoding API URLs into agent code, agents ask APIPOOL what they need and get routed to the best available provider based on real-time intelligent scoring.
Agent: "I need prediction market data"
↓
APIPOOL: scores all providers → picks best → returns endpoint + fallbacks
↓
Agent: calls provider directly (APIPOOL is a router, not a proxy)
Think of it as DNS for AI services — but with quality scoring, self-learning, anomaly detection, and natural language understanding built in.
# Try it right now — no auth needed
curl https://agent-gateway-zeta.vercel.app/api/v1/data/markets/trending?limit=3
# Route to best provider using natural language
curl -X POST https://agent-gateway-zeta.vercel.app/api/v1/route \
-H "Content-Type: application/json" \
-d '{"query": "I need crypto prediction market prices"}'
# Or use exact capability matching
curl -X POST https://agent-gateway-zeta.vercel.app/api/v1/route \
-H "Content-Type: application/json" \
-d '{"capability": "prediction-markets"}'
# Test the contextual understanding engine
curl -X POST https://agent-gateway-zeta.vercel.app/api/v1/intelligence \
-H "Content-Type: application/json" \
-d '{"query": "trending crypto odds"}'npm install
npm run dev
# → http://localhost:3000APIPOOL goes beyond static quality scores. Four real-time intelligence systems continuously adapt routing decisions:
Every routing decision is recorded with its outcome. Providers that consistently deliver successful responses get boosted (up to 1.2x). Unreliable providers get penalized (down to 0.8x).
learning_multiplier = 1.0 + success_bonus + latency_bonus
success_bonus = (success_rate - 0.7) × 0.5 // 100% → +0.15
latency_bonus = clamp(-0.05, (1500-avg)/20000, +0.05)
Health check data is analyzed for trends. If latency is rising or success rate is dropping, the provider is proactively demoted before it fails.
Split last 10 checks: recent (3) vs baseline (7)
Both degrading → "failing" → 0.7x multiplier
One degrading → "at_risk" → 0.9x multiplier
Stable → "healthy" → 1.0x multiplier
Unusual behavior is flagged in real-time. Latency spikes, error bursts, and downtime events directly reduce the effective score.
latency_spike: recent > 2× baseline → -5% (medium) or -15% (high)
error_burst: 2+ of 3 checks fail → -5% to -15%
downtime: 3/3 checks failed → -15%
Agents don't need to know exact capability strings. Send natural language:
// Instead of knowing the exact capability name:
{ "capability": "prediction-markets" }
// Just describe what you need:
{ "query": "I need crypto market prediction data" }
// → resolves to "prediction-markets" with confidence 0.5effective_score = base_quality × learning × predictive × anomaly
Where base_quality = 0.4(uptime/20) + 0.3(5-latency/1000) + 0.3(success×5)
| Method | Endpoint | Description |
|---|---|---|
POST |
/api/v1/route |
Intelligent routing — find best provider (supports capability or query) |
GET |
/api/v1/registry |
Browse all registered APIs |
POST |
/api/v1/registry |
Register a new API |
GET |
/api/v1/capabilities |
List all available capabilities |
GET |
/api/v1/intelligence |
Intelligence system status + provider predictions |
POST |
/api/v1/intelligence |
Test contextual understanding (NL → capability) |
GET |
/api/v1/health-check |
Provider health status |
| Method | Endpoint | Description |
|---|---|---|
GET |
/api/v1/data/markets/trending |
Top markets by trading volume |
GET |
/api/v1/data/markets/search?q= |
Full-text search |
GET |
/api/v1/data/markets/{slug} |
Market detail + price history |
GET |
/api/v1/data/markets/stats |
Volume, categories, sync stats |
GET |
/api/v1/data/markets |
All markets (filterable by category, active, sort) |
| Method | Endpoint | Description |
|---|---|---|
POST |
/api/v1/search |
Brave Web Search — 10 free/day, then $0.005 USDC via x402 |
GET |
/api/v1/search |
Schema, pricing info, x402 flow docs |
# Free tier (first 10/day per IP)
curl -X POST https://agent-gateway-zeta.vercel.app/api/v1/search \
-H "Content-Type: application/json" \
-d '{"query": "bitcoin 2026", "count": 5}'
# After free tier: server returns 402 with payment requirements
# Use @x402/fetch to pay automatically:
# npm install @x402/fetchx402 Payment Details:
- Network: Base mainnet (EIP155:8453)
- Asset: USDC (
0x833589fCD6eDb6E08f4c7C32D4f71b54bdA02913) - Price: $0.005 per request
- Wallet:
0x3058ff5B62E67a27460904783aFd670fF70c6A4A - Facilitator:
https://x402.org/facilitator
┌─────────────────────────────────────────────────────────────┐
│ AGENT REQUEST │
│ │
│ POST /api/v1/route │
│ { "query": "crypto odds" } │
│ or { "capability": "prediction-markets" } │
│ │
└──────────────────────┬──────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ APIPOOL INTELLIGENCE │
│ │
│ P4: Parse NL query → capability │
│ P1: Apply learning multiplier (0.8-1.2x from history) │
│ P2: Apply predictive multiplier (trend analysis) │
│ P3: Apply anomaly multiplier (spike/burst detection) │
│ │
│ effective = base × learning × predictive × anomaly │
│ Sort providers → return best + fallbacks │
│ │
└──────────────────────┬──────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ AGENT RESPONSE │
│ │
│ { provider: { endpoint, score, metrics }, │
│ intelligence: { effective_score, multipliers }, │
│ fallbacks: [...] } │
│ │
│ Agent calls provider endpoint directly (not proxied) │
└─────────────────────────────────────────────────────────────┘
Vercel Cron (daily) → Polymarket Gamma API → Supabase PostgreSQL
↓
Agent → /api/v1/data/markets/* → Supabase query → <200ms JSON response
No Mac Mini needed. No LLM needed. 138 markets tracked. $17M+ volume indexed.
| Feature | Status |
|---|---|
| Intelligent routing (4 pillars) | Live |
| Natural language queries | Live |
| Polymarket data (138 markets) | Live |
| Quality scoring (Q formula) | Live |
| Provider health checks | Live (daily cron) |
| Self-learning from usage | Live |
| Predictive orchestration | Live |
| Anomaly detection | Live |
| JSON-LD responses | Live |
| A2A agent card | Live |
| x402 payments (Base mainnet USDC) | Live |
| ERC-8004 on-chain identity | #22742 |
| About page | /about |
| Full methodology | /methodology |
| API docs | /docs |
| Explore APIs | /explore |
| Register API | /register |
| Protocol | Status | How APIPOOL Uses It |
|---|---|---|
| A2A (Google) | Supported | Agent cards at /.well-known/agent-card.json for discovery |
| MCP (Anthropic) | Compatible | All data endpoints work as MCP data sources |
| x402 (Coinbase) | Live | Pay-per-request via USDC on Base mainnet ($0.005/search) |
| ERC-8004 | Active | On-chain identity #22742 on Ethereum |
| JSON-LD | Native | All responses include @context for machine semantics |
- Next.js — App Router, TypeScript
- Supabase — PostgreSQL for markets + intelligence tracking
- Vercel — Hosting, cron jobs, edge functions
- Tailwind CSS — Monochrome design
# Clone
git clone https://github.com/exhuman777/agent-gateway.git
cd agent-gateway
# Install
npm install
# Set up Supabase
# 1. Create project at supabase.com
# 2. Run supabase-migration.sql in SQL Editor
# 3. Run supabase-intelligence.sql in SQL Editor
# Environment
cp .env.example .env.local
# Fill in: NEXT_PUBLIC_SUPABASE_URL, NEXT_PUBLIC_SUPABASE_ANON_KEY, CRON_SECRET
# For x402: X402_WALLET_ADDRESS, X402_NETWORK=base, X402_PRICE=0.005, BRAVE_API_KEY
# Run
npm run dev
# Deploy
vercel --prodsrc/
app/
api/v1/
route/ — Intelligent routing endpoint
registry/ — API registry CRUD
capabilities/ — Capability listing
intelligence/ — Intelligence status + NL parsing
health-check/ — Provider health checks
search/ — x402 web search (Brave + micropayments)
data/markets/ — Polymarket data endpoints
about/ — About page
methodology/ — Full methodology with formulas
docs/ — API documentation
explore/ — Browse APIs
register/ — Register API form
lib/
intelligence.ts — 4-pillar intelligence engine
polymarket.ts — Polymarket data sync + queries
registry.ts — Registry logic
x402.ts — x402 payment protocol (402 responses, facilitator verification)
brave.ts — Brave Search API integration
freetier.ts — Free tier tracking (10/day per IP)
db.ts — Supabase operations
types.ts — TypeScript interfaces
public/
llms.txt — LLM-friendly site description
SKILL.md — Claude Code integration guide
openclaw-skills.json — OpenClaw agent skills
Rufus #22742 — Autonomous AI agent on Ethereum Mainnet, built by Exhuman.
The agentic AI market hits $10.9B in 2026 (49.6% CAGR). 1 billion+ AI agents will be in operation by end of year. They need infrastructure. APIPOOL is that infrastructure.