Skip to content

fracabu/logistic-data-dash

Repository files navigation

Logistics Tracking Dashboard

Multi-tier Analytics for Logistics Data

Interactive dashboard for monitoring and analyzing logistics data with three versions

Python Streamlit Plotly scikit-learn

🇬🇧 English | 🇮🇹 Italiano


🇬🇧 English

Overview

An interactive dashboard for monitoring and analyzing logistics data, available in three versions with increasing functionality to adapt to different analysis needs.

Features

Version Features
Basic CSV loading, date/vehicle filters, core KPIs, top 10 materials, basic trend
Standard + Material filters, logistics map, extended KPIs, detailed statistics
Premium + ML predictions, advanced route maps, performance analysis, feature importance

Quick Start

git clone https://github.com/fracabu/logistic-data-dash.git
cd logistic-data-dash
python -m venv venv
venv\Scripts\activate  # Windows
pip install -r requirements.txt
streamlit run logistic_dashboard_premium.py

Data Format

Required CSV columns:

  • BookingID, BookingID_Date - Booking identification
  • Origin_Location, Destination_Location - Locations
  • vehicleType, Material Shipped - Transport details
  • TRANSPORTATION_DISTANCE_IN_KM - Distance
  • Org_lat_lon, Des_lat_lon - Coordinates (Standard/Premium)

🇮🇹 Italiano

Panoramica

Dashboard interattiva per il monitoraggio e l'analisi dei dati logistici, disponibile in tre versioni con funzionalita crescenti per diverse esigenze di analisi.

Funzionalita

Versione Funzionalita
Basic Caricamento CSV, filtri data/veicolo, KPI base, top 10 materiali, trend base
Standard + Filtri materiali, mappa logistica, KPI estesi, statistiche dettagliate
Premium + Previsioni ML, mappe rotte avanzate, analisi performance, feature importance

Avvio Rapido

git clone https://github.com/fracabu/logistic-data-dash.git
cd logistic-data-dash
python -m venv venv
venv\Scripts\activate  # Windows
pip install -r requirements.txt
streamlit run logistic_dashboard_premium.py

Formato Dati

Colonne CSV richieste:

  • BookingID, BookingID_Date - Identificazione prenotazione
  • Origin_Location, Destination_Location - Localita
  • vehicleType, Material Shipped - Dettagli trasporto
  • TRANSPORTATION_DISTANCE_IN_KM - Distanza
  • Org_lat_lon, Des_lat_lon - Coordinate (Standard/Premium)

Tech Stack

  • Framework: Streamlit
  • Visualization: Plotly
  • ML: scikit-learn, statsmodels
  • Data: Pandas, NumPy

License

MIT


Made by fracabu

About

Interactive logistics data dashboard with multi-level features for tracking, analysis, and visualization

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages