Interactive dashboard for monitoring and analyzing logistics data with three versions
An interactive dashboard for monitoring and analyzing logistics data, available in three versions with increasing functionality to adapt to different analysis needs.
| Version | Features |
|---|---|
| Basic | CSV loading, date/vehicle filters, core KPIs, top 10 materials, basic trend |
| Standard | + Material filters, logistics map, extended KPIs, detailed statistics |
| Premium | + ML predictions, advanced route maps, performance analysis, feature importance |
git clone https://github.com/fracabu/logistic-data-dash.git
cd logistic-data-dash
python -m venv venv
venv\Scripts\activate # Windows
pip install -r requirements.txt
streamlit run logistic_dashboard_premium.pyRequired CSV columns:
BookingID,BookingID_Date- Booking identificationOrigin_Location,Destination_Location- LocationsvehicleType,Material Shipped- Transport detailsTRANSPORTATION_DISTANCE_IN_KM- DistanceOrg_lat_lon,Des_lat_lon- Coordinates (Standard/Premium)
Dashboard interattiva per il monitoraggio e l'analisi dei dati logistici, disponibile in tre versioni con funzionalita crescenti per diverse esigenze di analisi.
| Versione | Funzionalita |
|---|---|
| Basic | Caricamento CSV, filtri data/veicolo, KPI base, top 10 materiali, trend base |
| Standard | + Filtri materiali, mappa logistica, KPI estesi, statistiche dettagliate |
| Premium | + Previsioni ML, mappe rotte avanzate, analisi performance, feature importance |
git clone https://github.com/fracabu/logistic-data-dash.git
cd logistic-data-dash
python -m venv venv
venv\Scripts\activate # Windows
pip install -r requirements.txt
streamlit run logistic_dashboard_premium.pyColonne CSV richieste:
BookingID,BookingID_Date- Identificazione prenotazioneOrigin_Location,Destination_Location- LocalitavehicleType,Material Shipped- Dettagli trasportoTRANSPORTATION_DISTANCE_IN_KM- DistanzaOrg_lat_lon,Des_lat_lon- Coordinate (Standard/Premium)
- Framework: Streamlit
- Visualization: Plotly
- ML: scikit-learn, statsmodels
- Data: Pandas, NumPy
MIT