Skip to content
This repository was archived by the owner on Jun 18, 2024. It is now read-only.
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 4 additions & 3 deletions classifier_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
from albert import optimization
from albert import tokenization
import tensorflow.compat.v1 as tf
from tensorflow.compat.v1 import estimator as tf_estimator
from tensorflow.contrib import data as contrib_data
from tensorflow.contrib import metrics as contrib_metrics
from tensorflow.contrib import tpu as contrib_tpu
Expand Down Expand Up @@ -835,7 +836,7 @@ def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
else:
is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)

is_training = (mode == tf.estimator.ModeKeys.TRAIN)
is_training = (mode == tf_estimator.ModeKeys.TRAIN)

(total_loss, per_example_loss, probabilities, logits, predictions) = \
create_model(albert_config, is_training, input_ids, input_mask,
Expand Down Expand Up @@ -867,7 +868,7 @@ def tpu_scaffold():
init_string)

output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
if mode == tf_estimator.ModeKeys.TRAIN:

train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps,
Expand All @@ -878,7 +879,7 @@ def tpu_scaffold():
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.EVAL:
elif mode == tf_estimator.ModeKeys.EVAL:
if task_name not in ["sts-b", "cola"]:
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
Expand Down
7 changes: 4 additions & 3 deletions race_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
from albert import optimization
from albert import tokenization
import tensorflow.compat.v1 as tf
from tensorflow.compat.v1 import estimator as tf_estimator
from tensorflow.contrib import tpu as contrib_tpu


Expand Down Expand Up @@ -356,7 +357,7 @@ def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
else:
is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)

is_training = (mode == tf.estimator.ModeKeys.TRAIN)
is_training = (mode == tf_estimator.ModeKeys.TRAIN)

(total_loss, per_example_loss, probabilities, logits, predictions) = \
create_model(albert_config, is_training, input_ids, input_mask,
Expand Down Expand Up @@ -389,7 +390,7 @@ def tpu_scaffold():
init_string)

output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
if mode == tf_estimator.ModeKeys.TRAIN:

train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
Expand All @@ -399,7 +400,7 @@ def tpu_scaffold():
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.EVAL:
elif mode == tf_estimator.ModeKeys.EVAL:
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(
Expand Down
3 changes: 2 additions & 1 deletion run_classifier.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
from albert import fine_tuning_utils
from albert import modeling
import tensorflow.compat.v1 as tf
from tensorflow.compat.v1 import estimator as tf_estimator
from tensorflow.contrib import cluster_resolver as contrib_cluster_resolver
from tensorflow.contrib import tpu as contrib_tpu

Expand Down Expand Up @@ -177,7 +178,7 @@ def _serving_input_receiver_fn():
t = tf.to_int32(t)
feature_map[name] = t

return tf.estimator.export.ServingInputReceiver(
return tf_estimator.export.ServingInputReceiver(
features=feature_map, receiver_tensors=serialized_example)


Expand Down
7 changes: 4 additions & 3 deletions run_pretraining.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
from albert import optimization
from six.moves import range
import tensorflow.compat.v1 as tf
from tensorflow.compat.v1 import estimator as tf_estimator
from tensorflow.contrib import cluster_resolver as contrib_cluster_resolver
from tensorflow.contrib import data as contrib_data
from tensorflow.contrib import tpu as contrib_tpu
Expand Down Expand Up @@ -153,7 +154,7 @@ def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
# it does represent sentence_order_labels.
sentence_order_labels = features["next_sentence_labels"]

is_training = (mode == tf.estimator.ModeKeys.TRAIN)
is_training = (mode == tf_estimator.ModeKeys.TRAIN)

model = modeling.AlbertModel(
config=albert_config,
Expand Down Expand Up @@ -217,7 +218,7 @@ def tpu_scaffold():
init_string)

output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
if mode == tf_estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps,
use_tpu, optimizer, poly_power, start_warmup_step)
Expand All @@ -227,7 +228,7 @@ def tpu_scaffold():
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.EVAL:
elif mode == tf_estimator.ModeKeys.EVAL:

def metric_fn(*args):
"""Computes the loss and accuracy of the model."""
Expand Down
3 changes: 2 additions & 1 deletion run_squad_v1.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
from albert import squad_utils
import six
import tensorflow.compat.v1 as tf
from tensorflow.compat.v1 import estimator as tf_estimator

from tensorflow.contrib import cluster_resolver as contrib_cluster_resolver
from tensorflow.contrib import tpu as contrib_tpu
Expand Down Expand Up @@ -236,7 +237,7 @@ def _seq_serving_input_fn():
"input_mask": input_mask,
"segment_ids": segment_ids
}
return tf.estimator.export.ServingInputReceiver(features=inputs,
return tf_estimator.export.ServingInputReceiver(features=inputs,
receiver_tensors=inputs)

return _seq_serving_input_fn
Expand Down
13 changes: 7 additions & 6 deletions squad_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@
from six.moves import map
from six.moves import range
import tensorflow.compat.v1 as tf
from tensorflow.compat.v1 import estimator as tf_estimator
from tensorflow.contrib import data as contrib_data
from tensorflow.contrib import layers as contrib_layers
from tensorflow.contrib import tpu as contrib_tpu
Expand Down Expand Up @@ -767,7 +768,7 @@ def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]

is_training = (mode == tf.estimator.ModeKeys.TRAIN)
is_training = (mode == tf_estimator.ModeKeys.TRAIN)

(start_logits, end_logits) = create_v1_model(
albert_config=albert_config,
Expand Down Expand Up @@ -809,7 +810,7 @@ def tpu_scaffold():
init_string)

output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
if mode == tf_estimator.ModeKeys.TRAIN:
seq_length = modeling.get_shape_list(input_ids)[1]

def compute_loss(logits, positions):
Expand All @@ -836,7 +837,7 @@ def compute_loss(logits, positions):
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.PREDICT:
elif mode == tf_estimator.ModeKeys.PREDICT:
predictions = {
"start_log_prob": start_logits,
"end_log_prob": end_logits,
Expand Down Expand Up @@ -1594,7 +1595,7 @@ def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]

is_training = (mode == tf.estimator.ModeKeys.TRAIN)
is_training = (mode == tf_estimator.ModeKeys.TRAIN)

outputs = create_v2_model(
albert_config=albert_config,
Expand Down Expand Up @@ -1636,7 +1637,7 @@ def tpu_scaffold():
init_string)

output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
if mode == tf_estimator.ModeKeys.TRAIN:
seq_length = modeling.get_shape_list(input_ids)[1]

def compute_loss(log_probs, positions):
Expand Down Expand Up @@ -1671,7 +1672,7 @@ def compute_loss(log_probs, positions):
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.PREDICT:
elif mode == tf_estimator.ModeKeys.PREDICT:
predictions = {
"unique_ids": features["unique_ids"],
"start_top_index": outputs["start_top_index"],
Expand Down