Skip to content

A framework for transforming tabular (CSV, SQL) and hierarchical data (JSON, XML) into property graphs and ingesting them into graph databases (ArangoDB, Neo4j)

License

Notifications You must be signed in to change notification settings

growgraph/graflo

Repository files navigation

GraFlo graflo logo

A framework for transforming tabular (CSV, SQL) and hierarchical data (JSON, XML) into property graphs and ingesting them into graph databases (ArangoDB, Neo4j, TigerGraph, FalkorDB, Memgraph).

⚠️ Package Renamed: This package was formerly known as graphcast.

Python PyPI version PyPI Downloads License: BSL pre-commit DOI

Core Concepts

Property Graphs

graflo works with property graphs, which consist of:

  • Vertices: Nodes with properties and optional unique identifiers
  • Edges: Relationships between vertices with their own properties
  • Properties: Both vertices and edges may have properties

Schema

The Schema defines how your data should be transformed into a graph and contains:

  • Vertex Definitions: Specify vertex types, their properties, and unique identifiers
    • Fields can be specified as strings (backward compatible) or typed Field objects with types (INT, FLOAT, STRING, DATETIME, BOOL)
    • Type information enables better validation and database-specific optimizations
  • Edge Definitions: Define relationships between vertices and their properties
    • Weight fields support typed definitions for better type safety
  • Resource Mapping: describe how data sources map to vertices and edges
  • Transforms: Modify data during the casting process
  • Automatic Schema Inference: Generate schemas automatically from PostgreSQL 3NF databases

Resources

Resources are your data sources that can be:

  • Table-like: CSV files, database tables
  • JSON-like: JSON files, nested data structures

Features

  • Graph Transformation Meta-language: A powerful declarative language to describe how your data becomes a property graph:
    • Define vertex and edge structures with typed fields
    • Set compound indexes for vertices and edges
    • Use blank vertices for complex relationships
    • Specify edge constraints and properties with typed weight fields
    • Apply advanced filtering and transformations
  • Typed Schema Definitions: Enhanced type support throughout the schema system
    • Vertex fields support types (INT, FLOAT, STRING, DATETIME, BOOL) for better validation
    • Edge weight fields can specify types for improved type safety
    • Backward compatible: fields without types default to None (suitable for databases like ArangoDB)
  • 🚀 PostgreSQL Schema Inference: Automatically generate schemas from PostgreSQL 3NF databases - No manual schema definition needed!
    • Introspect PostgreSQL schemas to identify vertex-like and edge-like tables
    • Automatically map PostgreSQL data types to graflo Field types (INT, FLOAT, STRING, DATETIME, BOOL)
    • Infer vertex configurations from table structures with proper indexes
    • Infer edge configurations from foreign key relationships
    • Create Resource mappings from PostgreSQL tables automatically
    • Direct database access - ingest data without exporting to files first
  • Parallel processing: Use as many cores as you have
  • Database support: Ingest into ArangoDB, Neo4j, TigerGraph, FalkorDB, and Memgraph using the same API (database agnostic). Source data from PostgreSQL and other SQL databases.
  • Server-side filtering: Efficient querying with server-side filtering support (TigerGraph REST++ API)

Documentation

Full documentation is available at: growgraph.github.io/graflo

Installation

pip install graflo

Usage Examples

Simple ingest

from suthing import FileHandle

from graflo import Schema, Caster, Patterns
from graflo.db.connection.onto import ArangoConfig

schema = Schema.from_dict(FileHandle.load("schema.yaml"))

# Option 1: Load config from docker/arango/.env (recommended)
conn_conf = ArangoConfig.from_docker_env()

# Option 2: Load from environment variables
# Set: ARANGO_URI, ARANGO_USERNAME, ARANGO_PASSWORD, ARANGO_DATABASE
conn_conf = ArangoConfig.from_env()

# Option 3: Load with custom prefix (for multiple configs)
# Set: USER_ARANGO_URI, USER_ARANGO_USERNAME, USER_ARANGO_PASSWORD, USER_ARANGO_DATABASE
user_conn_conf = ArangoConfig.from_env(prefix="USER")

# Option 4: Create config directly
# conn_conf = ArangoConfig(
#     uri="http://localhost:8535",
#     username="root",
#     password="123",
#     database="mygraph",  # For ArangoDB, 'database' maps to schema/graph
# )
# Note: If 'database' (or 'schema_name' for TigerGraph) is not set,
# Caster will automatically use Schema.general.name as fallback

from graflo.util.onto import FilePattern
import pathlib

# Create Patterns with file patterns
patterns = Patterns()
patterns.add_file_pattern(
    "work",
    FilePattern(regex="\Sjson$", sub_path=pathlib.Path("./data"), resource_name="work")
)

# Or use resource_mapping for simpler initialization
# patterns = Patterns(
#     _resource_mapping={
#         "work": "./data/work.json",
#     }
# )

schema.fetch_resource()

from graflo.caster import IngestionParams

caster = Caster(schema)

ingestion_params = IngestionParams(
    clean_start=False,  # Set to True to wipe existing database
    # max_items=1000,  # Optional: limit number of items to process
    # batch_size=10000,  # Optional: customize batch size
)

caster.ingest(
    output_config=conn_conf,  # Target database config
    patterns=patterns,  # Source data patterns
    ingestion_params=ingestion_params,
)

PostgreSQL Schema Inference

from graflo.db.postgres import PostgresConnection
from graflo.db.inferencer import infer_schema_from_postgres
from graflo.db.connection.onto import PostgresConfig
from graflo import Caster
from graflo.onto import DBFlavor

# Connect to PostgreSQL
postgres_config = PostgresConfig.from_docker_env()  # or PostgresConfig.from_env()
postgres_conn = PostgresConnection(postgres_config)

# Infer schema from PostgreSQL 3NF database
schema = infer_schema_from_postgres(
    postgres_conn,
    schema_name="public",  # PostgreSQL schema name
    db_flavor=DBFlavor.ARANGO  # Target graph database flavor
)

# Close PostgreSQL connection
postgres_conn.close()

# Use the inferred schema with Caster
caster = Caster(schema)
# ... continue with ingestion

Development

To install requirements

git clone git@github.com:growgraph/graflo.git && cd graflo
uv sync --dev

Tests

Test databases

Quick Start: To start all test databases at once, use the convenience scripts from the docker folder:

cd docker
./start-all.sh    # Start all services
./stop-all.sh      # Stop all services
./cleanup-all.sh   # Remove containers and volumes

Individual Services: To start individual databases, navigate to each database folder and run:

Spin up Arango from arango docker folder by

docker-compose --env-file .env up arango

Neo4j from neo4j docker folder by

docker-compose --env-file .env up neo4j

TigerGraph from tigergraph docker folder by

docker-compose --env-file .env up tigergraph

FalkorDB from falkordb docker folder by

docker-compose --env-file .env up falkordb

and Memgraph from memgraph docker folder by

docker-compose --env-file .env up memgraph

To run unit tests

pytest test

Note: Tests require external database containers (ArangoDB, Neo4j, TigerGraph, FalkorDB, Memgraph) to be running. CI builds intentionally skip test execution. Tests must be run locally with the required database images started (see Test databases section above).

Requirements

  • Python 3.11+ (Python 3.11 and 3.12 are officially supported)
  • python-arango
  • sqlalchemy>=2.0.0 (for PostgreSQL and SQL data sources)

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

About

A framework for transforming tabular (CSV, SQL) and hierarchical data (JSON, XML) into property graphs and ingesting them into graph databases (ArangoDB, Neo4j)

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •