경북대학교 IT대학 컴퓨터학부 데이터과학기초(ITEC419-001, 2018~) 강의예제코드
- Python 3.x
- Library: pandas(0.23.0), matplotlib(2.2.2), seaborn(0.8.1), sci-kit learn(0.19.1)
- Explorer Iris Dataset
- Standardization or mean removal or variance scaling (Z-score)
- Min-Max Normalization
- Normalized vector or Unit vector
- Binarization
- One-hot-encoder
- Missing value imputation
- Image Pre-processing
- Read CSV file in order to make data feame(Pandas) AND Change column name
- Line Chart
- Pie Chart
- Bar Chart
- Histogram
- Representation Values
- Box Plot
- Violin Plot
- Scatter Plot
- Scatter Plot Matrix
- Heatmap
- Vector Operation
- Vector Norm & Inner Product
- Matrix Operation
- Various Square Matrix
- Matrix Translation & Eigen Analysis
- Interval Estimation
- PCA (Principal Component Analysis)
- LDA (Linear Discriminant Analysis)
- Bayesian Classifer for Gaussian Distribution
- K-Nearest Neighbor Classifier using hand-made version and scikit-learn library
- K-means clustering (hand-made version)
- Simple Linear Regression
- Simple Linear Regression using scikit-learn library
- Multi Layer Perceptron
-
MNIST Example using Keras with TensorFlow
※ Requirements: Keras(2.2.2)
- Feature Extraction and Classification for COIL20 Dataset