Claude Code plugins and AI skills for time-series forecasting with Nixtla's statsforecast and TimeGPT.
Version: 1.7.0 | Status: Experimental | Plugins: 3 | Skills: 8
| Question | Answer |
|---|---|
| What | Claude Code plugins + AI skills for time-series forecasting |
| Who | Business showcase for Nixtla CEO |
| Status | Experimental (not production) |
| Stack | Python 3.10+, statsforecast, TimeGPT API |
| Entry Point | 005-plugins/nixtla-baseline-lab/ |
# 1. Python version OK?
python3 --version # Need 3.10+
# 2. Clone and install
git clone https://github.com/intent-solutions-io/plugins-nixtla.git
cd plugins-nixtla
pip install -e . && pip install -r requirements-dev.txt
# 3. Tests pass?
pytest -v --tb=short
# 4. Baseline lab smoke test (90 sec, offline, no API key needed)
cd 005-plugins/nixtla-baseline-lab
./scripts/setup_nixtla_env.sh --venv
source .venv-nixtla-baseline/bin/activate
python tests/run_baseline_m4_smoke.pyAll pass? You're ready. Something failed? See Troubleshooting.
nixtla/
├── 000-docs/ # ALL documentation (Doc-Filing v3.0)
│ ├── 001a-planned-skills/ # Generated skill specs (prediction markets)
│ ├── 004a-dev-planning-templates/ # Development templates
│ └── archive/ # Historical docs
│
├── 003-skills/ # Claude Skills (AI behavior mods)
│ └── .claude/skills/ # 8 production skills
│
├── 005-plugins/ # WORKING PLUGINS (start here)
│ ├── nixtla-baseline-lab/ # Main showcase - M4 benchmarks
│ ├── nixtla-bigquery-forecaster/ BigQuery integration
│ └── nixtla-search-to-slack/ # Slack notifications
│
├── packages/ # Installable packages
│ └── nixtla-claude-skills-installer/ # CLI: nixtla-skills
│
├── scripts/ # Repo-level automation
├── tests/ # Integration tests
├── .github/workflows/ # CI/CD pipelines (7 workflows)
│
├── CLAUDE.md # AI assistant instructions
├── README.md # You are here
├── CHANGELOG.md # Release history
└── VERSION # Current version: 1.7.0
| Role | Start Here |
|---|---|
| Developer | 005-plugins/nixtla-baseline-lab/ |
| Plugin Author | 000-docs/6767-f-OD-GUIDE-enterprise-plugin-implementation.md |
| Skill Author | 000-docs/6767-m-DR-STND-claude-skills-frontmatter-schema.md |
| Variable | Required | Purpose | Where Used |
|---|---|---|---|
NIXTLA_TIMEGPT_API_KEY |
For TimeGPT only | Nixtla API access | TimeGPT skills/plugins |
PROJECT_ID |
For GCP | Google Cloud project | BigQuery forecaster |
LOCATION |
For GCP | GCP region (default: us-central1) | BigQuery forecaster |
Quick Setup:
# Minimal (baseline lab - no API key needed)
# statsforecast runs fully offline
# Full setup (TimeGPT features)
export NIXTLA_TIMEGPT_API_KEY='your-key-here'
# GCP features
export PROJECT_ID='your-gcp-project'
export LOCATION='us-central1'# Clone
git clone https://github.com/intent-solutions-io/plugins-nixtla.git
cd plugins-nixtla
# Install (editable + dev deps)
pip install -e .
pip install -r requirements-dev.txtpytest -v # All tests
pytest 005-plugins/ -v # Plugin tests only
pytest --cov=005-plugins -v # With coverage
python tests/run_baseline_m4_smoke.py # Baseline lab smoke testblack --check . # Check formatting
black . # Fix formatting
isort --check-only . # Check imports
isort . # Fix imports
flake8 . # Lint checkpip install -e packages/nixtla-claude-skills-installer
cd /path/to/your/project
nixtla-skills init # Install all skills
nixtla-skills update # Update to latest
nixtla-skills --version # Check version| Workflow | File | Trigger | Purpose |
|---|---|---|---|
| Main CI | ci.yml |
PR, push | Lint, format, test |
| Baseline Lab | nixtla-baseline-lab-ci.yml |
PR, push | Plugin tests |
| Skills Installer | skills-installer-ci.yml |
PR, push | Installer tests |
| BigQuery Deploy | deploy-bigquery-forecaster.yml |
Manual | Cloud Functions |
| Plugin Validator | plugin-validator.yml |
PR | Schema validation |
| Gemini PR Review | gemini-pr-review.yml |
PR | AI code review |
| Gemini Daily Audit | gemini-daily-audit.yml |
Schedule | Daily audit |
Location: .github/workflows/
Required to Merge: ci.yml must pass
| Plugin | Purpose | Status | API Key |
|---|---|---|---|
nixtla-baseline-lab |
Run statsforecast baselines on M4 data | Working | No |
nixtla-bigquery-forecaster |
Forecast BigQuery data via Cloud Functions | Working | Yes |
nixtla-search-to-slack |
Search web/GitHub, post to Slack | MVP | Yes |
cd 005-plugins/nixtla-baseline-lab
./scripts/setup_nixtla_env.sh --venv
source .venv-nixtla-baseline/bin/activate
pip install -r scripts/requirements.txt
# In Claude Code:
/nixtla-baseline-m4 demo_preset=m4_daily_smallRuns in ~90 seconds, fully offline, zero API costs.
| Document | Audience | Link |
|---|---|---|
| Plugin Implementation | Developers | 6767-f-OD-GUIDE-enterprise-plugin-implementation.md |
| Skill Frontmatter Schema | Skill Authors | 6767-m-DR-STND-claude-skills-frontmatter-schema.md |
| Skill Authoring Guide | Skill Authors | 6767-n-DR-GUID-claude-skills-authoring-guide.md |
| Skill Output Controls | Developers | 099-AA-GUIDE-skill-output-controls.md |
Doc-Filing System: NNN-CC-ABCD-description.md
PP= Planning,AT= Architecture,AA= Audits,OD= Overview,DR= Reference
| Problem | Solution |
|---|---|
ModuleNotFoundError: statsforecast |
pip install -r scripts/requirements.txt |
ModuleNotFoundError (general) |
pip install -e . && pip install -r requirements-dev.txt |
| Tests fail with import error | export PYTHONPATH=$PWD |
| Permission denied on script | chmod +x scripts/*.sh |
| Plugin not found after install | Restart Claude Code |
| Smoke test timeout | First run downloads M4 data (~30MB) |
NIXTLA_TIMEGPT_API_KEY not set |
Only needed for TimeGPT features, not baseline lab |
| Python version error | Need Python 3.10+ (python3 --version) |
Still stuck? Open an issue or email jeremy@intentsolutions.io
- Fork the repo
- Create feature branch:
git checkout -b feature/my-feature - Make changes, add tests
- Run
pytestandblack .locally - Open PR against
main
See CONTRIBUTING.md for details.
Jeremy Longshore | jeremy@intentsolutions.io
Questions? Open an issue or email.
Location: 002-workspaces/energy-grid-prototype/
48-hour electricity load forecasting for the Texas (ERCOT) grid with interactive map visualization.
| Component | Description |
|---|---|
ercot_grid_forecast.py |
Statsforecast + TimeGPT forecasting |
ercot_map_viz.py |
Interactive Texas grid map (folium) |
ERCOT_Grid_Forecast_Demo.ipynb |
Complete Jupyter demo |
Results: SeasonalNaive wins at 4.28% MAPE on 48h holdout.
cd 002-workspaces/energy-grid-prototype
python -m venv venv && source venv/bin/activate
pip install -r requirements.txt
python ercot_grid_forecast.pyResearch: See 121-AA-REPT-energy-grid-forecasting-opportunity-research.md
MIT