This is the official implementation of our ICLR 2025 paper, "Moner: Motion Correction in Undersampled Radial MRI with Unsupervised Neural Representation" [OpenReview].

Fig. 1: Overview of the proposed Moner model.

Fig. 2: Qualitative results of NuIFFT and Moner on 5 representative samples of the fastMRI dataset at AF=2 and MR=[-5, +5].
Moner
│ config.yaml # configuration file.
│ dataset.py # dataloader
│ main.py # running script for training
│ model.py # motion correction module
│ readme.md # readme file
│ results.ipynb # results report
│ train.py # training function
│ utils.py # tools
│
├─data
│ gt.nii # gt MR images
│ kdata_360_5.nii # undersampled, motion-corrupted k-data
│ nuifft_360_5.nii # NuIFFT MRI reconstructions
│ rot_360_5.txt # gt motion parameter (rotation angle)
│ shift_x_360_5.txt # gt motion parameter (X-axis shift)
│ shift_y_360_5.txt # gt motion parameter (Y-axis shift)
│
├─fig # visualization
│ fig_method.jpg
│ fig_results.gif
│
├─model
│ model_360_5_0~4.pkl # Moner checkpoints
│
└─out
recon_360_5.nii # Moner MRI reconstructions
recon_reg_360_5.nii # Moner MRI reconstructions after applying rigid registruction
rot_360_5.txt # estimated motion parameter (rotation angle)
shift_x_360_5.txt # estimated motion parameter (X-axis shift)
shift_y_360_5.txt # estimated motion parameter (Y-axis shift)To run this project, you will need the following packages:
- PyTorch
- tinycudann
- torchkbnufft
- SimpleITK
- tqdm
- numpy
- other dependencies
To train Moner from scratch, navigate to the project directory and run the following command in your terminal:
python main.pyThis will train the Moner model on rigid motion-corrupted, undersampled k-space data from the fastMRI dataset at AF=2x and MR=[-5, +5] (./data/kdata_360_5.nii). The file kdata_360_5.nii is generated from the raw k-space data using the 1D IFFT operator, implemented in the function ifft1d in the utils.py file. The well-trained model checkpoints will be stored in ./model, and the corresponding MR images and motion parameters will be saved in ./out.
To evaluate the results, run the results.ipynb notebook, which provides the quantitative results of the reconstructed MR images and the estimated motion parameters.
For the 5 projections (./data/kdata_360_5.nii), the quantitative results of the MR images are:
| Method | PSNR | SSIM |
|---|---|---|
| NuIFFT | 21.78 | 0.328 |
| Moner | 32.53 | 0.935 |
NIFTI files (.nii) can be viewed using the ITK-SNAP software, available for free download at: http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.SNAP4
If you find our work useful in your research, please cite:
@inproceedings{
wu2025moner,
title={Moner: Motion Correction in Undersampled Radial {MRI} with Unsupervised Neural Representation},
author={Qing Wu and Chenhe Du and Xuanyu Tian and Jingyi Yu and Yuyao Zhang and Hongjiang Wei},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=OdnqG1fYpo}
}