Thermostability Prediction Powered by Synergistic Deep Learning at Experimental and Theoretical Levels for Nanobodies Webserver Link
- This is the official repository of NBsTem_Tm & NBsTem_Q, two deep learning models designed for thermostability prediction of nanobodies (VHH).
- You can also access Webserver for thermostability prediction online.
Clone this repository and install the package locally:
$ git clone git@github.com:jourmore/NBsTem.git
$ cd NBsTem_local
$ pip install -r requirements.txtpython app_uncertainty.py -i in.fasta
python app_uncertainty.py -t QVQLVESGGGSVQAGGSLRLSCAASGYTVSTYCMGWFRQAPGKEREGVATILGGSTYYGDSVKGRFTISQDNAKNTVYLQMNSLKPEDTAIYYCAGSTVASTGWCSRLRPYDYHYRGQGTQVTVSS*usage: python app_uncertainty.py [-h] [-i I] [-o O] [-t T] [-seed SEED] [-device DEVICE]
optional arguments:
-h, --help show this help message and exit
-i I Input path with fasta format. [Such as: ./in.fasta]
-o O Output file name when input is fasta format. [Default: "Output-NBsTem-[Year]-[Month]-[Day].csv"
-t T Input one sequecne with text format. [Default:
QVQLVESGGGSVQAGGSLRLSCAASGYTVSTYCMGWFRQAPGKEREGVATILGGSTYYGDSVKGRFTISQDNAKNTVYLQMNSLKPEDTAIYYCAGSTVASTGWCSRLRPYDYHYRGQGTQVTVSS]
-seed SEED Random seed for torch, numpy, os. [Default: 42]
-device DEVICE Device: cpu, cuda. [Default: auto]- Example (Using default parameters and example sequences):
python app_uncertainty.py -i example.fasta -o output.csv- Terminal output message:
******************************************************************
** **
** NBsTem v.2025 Thermostability prediction for Nanobody/VHH. **
** **
** https://www.nbscal.online/ **
** maojun@stu.scu.edu.cn **
******************************************************************
== 1.Use seed: 42
== 2.Device: cuda
== 3.Loading antibody language model: AntiBERTy
== 5.Begin to predict: Tm, Qclass, Specie and Chain
** Calculating Specie and Chain [Fast]
** Calculating Tm:: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 83/83 [00:04<00:00, 18.33it/s]
** Calculating Qclass:: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 83/83 [00:02<00:00, 29.13it/s]
== 6.Finish ! The results are shown below or you can check file [Tm83test.csv]
ID Tm Tm_Uncertainty Qclass Q_Uncertainty Specie Sequence
1 4W70 73.28 1.50 3 -1.00e-08 Camel EVQLVESGGGLVQAGDSLRLSATASGRTFSRAVMGWFRQAPGKERE...
2 5SV3 69.77 2.55 3 7.22e-01 Camel EVQLVESGGGLVQAGDSLRLSCTASGRTLGDYGVAWFRQAPGKERE...
3 Nb4 63.79 2.41 3 9.71e-01 Camel QVQLVESGGGSVQAGGSLRLSCAASGLDIHSYCMTWFRQAPGKERE...
4 Nb5 68.08 1.94 2 -1.00e-08 Camel QVQLVESGGGSVQAGGSLRLSCAASGSAISNLYMAWFRQAPGKERE...
5 Nb6 80.32 2.40 2 -1.00e-08 Camel HVQLVESGGGSVQAGGSLRLSCEISLYIYSSYCMGWFRQAPGKERE...
.. ... ... ... ... ... ... ...
79 NB-AGT-2-L22A-I72V 67.87 1.84 2 7.22e-01 Camel QVQLVESGGGLVQAGGSLRASCAASGRTFSSYAMGWFRQAPGKERE...
80 NB-AGT-2-L22A-I72A 69.10 1.55 2 7.22e-01 Camel QVQLVESGGGLVQAGGSLRASCAASGRTFSSYAMGWFRQAPGKERE...
81 NB-extra 74.07 2.09 3 9.71e-01 Human EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIGWVRRAPGKGEE...
82 NB-extra-CA-CV 71.00 2.33 3 9.71e-01 Human EVQLVESGGGLVQPGGSLRLSAAASGFNIKDTYIGWVRRAPGKGEE...
83 NB-extra-CA-CA 71.02 2.31 3 9.71e-01 Human EVQLVESGGGLVQPGGSLRLSAAASGFNIKDTYIGWVRRAPGKGEE...
[83 rows x 7 columns]
-
NBsTem_Tm: A model for predicting the melting temperature (Tm) from experiments (nanoDSF, DSF, DSC and CD, etc.).
-
NBsTem_Q: A model for predicting a new theoretical indicator (Qclass) proposed by us, which is derived from molecular dynamics simulation.
@article{...,
Title = {Thermostability Prediction Powered by Synergistic Deep Learning at Experimental and Theoretical Levels for Nanobodies},
Authors = {Jourmore, Yuanpeng Song, Ming Kong, Yanzhi Guo, Yijing Liu, and Xuemei Pu},
Journal = {ACS Applied Materials & Interfaces},
Year= {2025}
}