Skip to content

jourmore/NBsTem

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Thermostability Prediction Powered by Synergistic Deep Learning at Experimental and Theoretical Levels for Nanobodies Webserver Link

logo

  • This is the official repository of NBsTem_Tm & NBsTem_Q, two deep learning models designed for thermostability prediction of nanobodies (VHH).
  • You can also access Webserver for thermostability prediction online.

1.Setup

Clone this repository and install the package locally:

$ git clone git@github.com:jourmore/NBsTem.git
$ cd NBsTem_local
$ pip install -r requirements.txt

2.Usage

python app_uncertainty.py -i in.fasta
python app_uncertainty.py -t QVQLVESGGGSVQAGGSLRLSCAASGYTVSTYCMGWFRQAPGKEREGVATILGGSTYYGDSVKGRFTISQDNAKNTVYLQMNSLKPEDTAIYYCAGSTVASTGWCSRLRPYDYHYRGQGTQVTVSS
*usage: python app_uncertainty.py [-h] [-i I] [-o O] [-t T] [-seed SEED] [-device DEVICE]

optional arguments:
  -h, --help      show this help message and exit
  -i I            Input path with fasta format. [Such as: ./in.fasta]
  -o O            Output file name when input is fasta format. [Default: "Output-NBsTem-[Year]-[Month]-[Day].csv"
  -t T            Input one sequecne with text format. [Default:
                  QVQLVESGGGSVQAGGSLRLSCAASGYTVSTYCMGWFRQAPGKEREGVATILGGSTYYGDSVKGRFTISQDNAKNTVYLQMNSLKPEDTAIYYCAGSTVASTGWCSRLRPYDYHYRGQGTQVTVSS]
  -seed SEED      Random seed for torch, numpy, os. [Default: 42]
  -device DEVICE  Device: cpu, cuda. [Default: auto]

Example

  • Example (Using default parameters and example sequences):
python app_uncertainty.py -i example.fasta -o output.csv
  • Terminal output message:
******************************************************************
**                                                              **
**  NBsTem v.2025 Thermostability prediction for Nanobody/VHH.  **
**                                                              **
**                 https://www.nbscal.online/                   **
**                   maojun@stu.scu.edu.cn                      **
******************************************************************

== 1.Use seed: 42
== 2.Device: cuda
== 3.Loading antibody language model: AntiBERTy
== 5.Begin to predict: Tm, Qclass, Specie and Chain
** Calculating Specie and Chain [Fast]
** Calculating Tm:: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 83/83 [00:04<00:00, 18.33it/s]
** Calculating Qclass:: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 83/83 [00:02<00:00, 29.13it/s]
== 6.Finish ! The results are shown below or you can check file [Tm83test.csv]

                    ID     Tm  Tm_Uncertainty  Qclass Q_Uncertainty Specie                                           Sequence
1                 4W70  73.28            1.50       3     -1.00e-08  Camel  EVQLVESGGGLVQAGDSLRLSATASGRTFSRAVMGWFRQAPGKERE...
2                 5SV3  69.77            2.55       3      7.22e-01  Camel  EVQLVESGGGLVQAGDSLRLSCTASGRTLGDYGVAWFRQAPGKERE...
3                  Nb4  63.79            2.41       3      9.71e-01  Camel  QVQLVESGGGSVQAGGSLRLSCAASGLDIHSYCMTWFRQAPGKERE...
4                  Nb5  68.08            1.94       2     -1.00e-08  Camel  QVQLVESGGGSVQAGGSLRLSCAASGSAISNLYMAWFRQAPGKERE...
5                  Nb6  80.32            2.40       2     -1.00e-08  Camel  HVQLVESGGGSVQAGGSLRLSCEISLYIYSSYCMGWFRQAPGKERE...
..                 ...    ...             ...     ...           ...    ...                                                ...
79  NB-AGT-2-L22A-I72V  67.87            1.84       2      7.22e-01  Camel  QVQLVESGGGLVQAGGSLRASCAASGRTFSSYAMGWFRQAPGKERE...
80  NB-AGT-2-L22A-I72A  69.10            1.55       2      7.22e-01  Camel  QVQLVESGGGLVQAGGSLRASCAASGRTFSSYAMGWFRQAPGKERE...
81            NB-extra  74.07            2.09       3      9.71e-01  Human  EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIGWVRRAPGKGEE...
82      NB-extra-CA-CV  71.00            2.33       3      9.71e-01  Human  EVQLVESGGGLVQPGGSLRLSAAASGFNIKDTYIGWVRRAPGKGEE...
83      NB-extra-CA-CA  71.02            2.31       3      9.71e-01  Human  EVQLVESGGGLVQPGGSLRLSAAASGFNIKDTYIGWVRRAPGKGEE...

[83 rows x 7 columns]

3.About models

  • NBsTem_Tm: A model for predicting the melting temperature (Tm) from experiments (nanoDSF, DSF, DSC and CD, etc.).

  • NBsTem_Q: A model for predicting a new theoretical indicator (Qclass) proposed by us, which is derived from molecular dynamics simulation.

Citing this work

@article{...,
    Title = {Thermostability Prediction Powered by Synergistic Deep Learning at Experimental and Theoretical Levels for Nanobodies},
    Authors = {Jourmore, Yuanpeng Song, Ming Kong, Yanzhi Guo, Yijing Liu, and Xuemei Pu},
    Journal = {ACS Applied Materials & Interfaces},
    Year= {2025}
}

Releases

No releases published

Packages

No packages published

Languages