Subseasonal-to-Seasonal (S2S) prediction and predictability research using machine learning.
Related papers:
Molina, M. J., J. H. Richter, A. A. Glanville, K. Dagon, J. Berner, A. Hu, and G. A. Meehl (Submitted). Subseasonal Representation and Predictability of North American Weather Regimes using Machine Learning. Artificial Intelligence for the Earth Systems.
| Variable | Description |
|---|---|
| pr | Total (convective and large-scale) precipitation rate (liq + ice) (kg/m2/s). |
| rlut | Upwelling longwave flux at top of model (W/m2). |
| tas2m | Reference height temperature (K). |
| ts | Surface temperature (radiative) (K). |
| ua_200 | Zonal wind at 200 mbar pressure surface (m/s). |
| va_200 | Meridional wind at 200 mbar pressure surface (m/s). |
| ua_850 | Zonal wind at 850 mbar pressure surface (m/s). |
| va_850 | Meridional wind at 850 mbar pressure surface (m/s). |
| u | Zonal wind at 300 mbar pressure surface (m/s). |
| v | Meridional wind at 300 mbar pressure surface (m/s). |
| zg_200 | Geopotential Z at 200 mbar pressure surface (m). |
| zg_500 | Geopotential Z at 500 mbar pressure surface (m). |
| sst | Sea surface temperature. |
| ps | Surface pressure. |
| div | Divergence (300-mb). |
| eta | Absolute vorticity. |
| rws | Rossby wave source. |