Skip to content

mmm84766/DeepLearningNotebook

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Notebooks

Computer Vision and Deep Learning IPython notebooks

Computer Vision and Image Processing

Custom_Object_Detector_using_yolov3.ipynb

Training Custom Object Detector using yolov3

Colab Download message

Transfer_learning_based_classifier_to_classify_benign_malignant_tumor.ipynb

Training Transfer learning based classifier to classify benign/malignant tumor on Warwick QU Dataset on MobileNetV2

Colab Download message

Using_Otsu’s_method_for_segmentation.ipynb

Using Otsu’s method to generate data for training of deep learning image segmentation models.

Colab Download message

Multi_class_classifier_to_recognize_sign_language.ipynb

Multi class classifier to recognize sign language

Colab Download message

Horses_vs_humans_using_Transfer_Learning.ipynb

Horses and humans classification using pre-trained InceptionV3 Network

Colab Download message

GAN_keras.ipynb

Simple GAN trained on MNIST dataset

Colab Download message

GAN_PyTorch.ipynb

Simple GAN trained on MNIST dataset

Colab Download message

Cats_vs_Dogs_classifier.ipynb

Classify cats and dogs

Colab Download message

Blurring_image.ipynb

Blurring image using opencv

Colab Download message

Thresholding_image.ipynb

Thresholding image using opencv

Colab Download message

Handwriting_digits_recognition.ipynb

Handwriting digits recognition on MNIST without convolutions

Colab Download message

Intel_image_classification_from_kaggle_dataset.ipynb

Classification of Natural Scenes.

Colab Download message

unet_keras.ipynb

Implementaion of unet in keras.

Colab Download message

mask_rcnn_keras.ipynb

Using Mask RCNN to segment images

Colab Download message

Data preprocessing

Downloading_dataset_from_kaggle.ipynb

Download dataset from kaggle to local system.

Colab Download message

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

License

MIT

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published