中文 | English
ms-enclave is a modular and stable sandbox runtime environment that provides a secure isolated execution environment for applications. It implements strong isolation through Docker containers, equipped with local/HTTP managers and an extensible tool system, helping you execute code safely and efficiently in a controlled environment.
- 🔒 Secure Isolation: Complete isolation and resource limits based on Docker
- 🧩 Modular: Both sandboxes and tools are extensible (registered factory)
- ⚡ Stable Performance: Clean implementation, fast startup, with lifecycle management
- 🌐 Remote Management: Built-in FastAPI service, supports HTTP management
- 🔧 Tool System: Standardized tools enabled by sandbox type (OpenAI-style schema)
- Python >= 3.10
- Operating System: Linux, macOS, or Windows with Docker support
- Docker daemon available on local machine (Notebook sandbox requires port 8888 open)
pip install ms-enclave
# If Docker support is needed, install extra dependencies
pip install 'ms-enclave[docker]'git clone https://github.com/modelscope/ms-enclave.git
cd ms-enclave
pip install -e .
# If Docker support is needed, install extra dependencies
pip install -e '.[docker]'Tools need to be explicitly enabled in the configured tools_config, otherwise they won't be registered.
import asyncio
from ms_enclave.sandbox.boxes import SandboxFactory
from ms_enclave.sandbox.model import DockerSandboxConfig, SandboxType
async def main():
config = DockerSandboxConfig(
image='python:3.11-slim',
memory_limit='512m',
tools_config={
'python_executor': {},
'file_operation': {},
'shell_executor': {}
}
)
async with SandboxFactory.create_sandbox(SandboxType.DOCKER, config) as sandbox:
# 1) Write file
await sandbox.execute_tool('file_operation', {
'operation': 'write', 'file_path': '/sandbox/hello.txt', 'content': 'hi from enclave'
})
# 2) Execute Python code
result = await sandbox.execute_tool('python_executor', {
'code': "print('Hello from sandbox!')\nprint(open('/sandbox/hello.txt').read())"
})
print(result.output)
asyncio.run(main())- Direct use of SandboxFactory: Create/destroy sandboxes within a single process, most lightweight; suitable for scripts or one-time tasks
- Using LocalSandboxManager: Uniformly orchestrate lifecycle/cleanup of multiple sandboxes on local machine; suitable for service-oriented, multi-task parallel scenarios
- Using HttpSandboxManager: Manage sandboxes uniformly through remote HTTP service; suitable for cross-machine/distributed or stronger isolation deployments
When to use:
- You want a single entry point that chooses Local or HTTP manager automatically.
- You prefer central registration and discovery of available manager types.
Key points:
- If manager_type is provided, it is used directly.
- If base_url is provided (in config or kwargs), HTTP manager is created.
- Otherwise, Local manager is created by default.
Example: implicit selection by base_url
import asyncio
from ms_enclave.sandbox.manager import SandboxManagerFactory
async def main():
async with SandboxManagerFactory.create_manager(base_url='http://127.0.0.1:8000') as m:
# Use exactly like HttpSandboxManager
# e.g., create a DOCKER sandbox and execute a tool
# ... your code ...
pass
asyncio.run(main())Example: explicit selection + custom config
import asyncio
from ms_enclave.sandbox.manager import SandboxManagerFactory
from ms_enclave.sandbox.model import SandboxManagerConfig, SandboxManagerType
async def main():
cfg = SandboxManagerConfig(cleanup_interval=600)
async with SandboxManagerFactory.create_manager(
manager_type=SandboxManagerType.LOCAL, config=cfg
) as m:
# Use exactly like LocalSandboxManager
# ... your code ...
pass
asyncio.run(main())Discover registered manager types:
from ms_enclave.sandbox.manager import SandboxManagerFactory
print(SandboxManagerFactory.get_registered_types())Use Cases:
- Temporarily run a piece of code in scripts or microservices
- Fine-grained control over sandbox lifecycle (cleanup on context exit)
Example (Docker sandbox + Python execution):
import asyncio
from ms_enclave.sandbox.boxes import SandboxFactory
from ms_enclave.sandbox.model import DockerSandboxConfig, SandboxType
async def main():
cfg = DockerSandboxConfig(
tools_config={'python_executor': {}}
)
async with SandboxFactory.create_sandbox(SandboxType.DOCKER, cfg) as sb:
r = await sb.execute_tool('python_executor', {
'code': 'import platform; print(platform.python_version())'
})
print(r.output)
asyncio.run(main())Use Cases:
- Need to create/manage multiple sandboxes within the same process (create, query, stop, periodic cleanup)
- Want unified status view, statistics, and health checks
Example:
import asyncio
from ms_enclave.sandbox.manager import LocalSandboxManager
from ms_enclave.sandbox.model import DockerSandboxConfig, SandboxType
async def main():
async with LocalSandboxManager() as manager:
cfg = DockerSandboxConfig(tools_config={'shell_executor': {}})
sandbox_id = await manager.create_sandbox(SandboxType.DOCKER, cfg)
# Execute command
res = await manager.execute_tool(sandbox_id, 'shell_executor', {'command': 'echo hello'})
print(res.output.strip()) # hello
# View list
infos = await manager.list_sandboxes()
print([i.id for i in infos])
# Stop and delete
await manager.stop_sandbox(sandbox_id)
await manager.delete_sandbox(sandbox_id)
asyncio.run(main())Use Cases:
- Run sandbox service on a separate host/container, invoke remotely via HTTP
- Multiple applications share a secure controlled sandbox cluster
Start the service first (choose one):
# Method A: Command line
ms-enclave server --host 0.0.0.0 --port 8000
# Method B: Python startup
python -c "from ms_enclave.sandbox import create_server; create_server().run(host='0.0.0.0', port=8000)"Client example:
import asyncio
from ms_enclave.sandbox.manager import HttpSandboxManager
from ms_enclave.sandbox.model import DockerSandboxConfig, SandboxType
async def main():
async with HttpSandboxManager(base_url='http://127.0.0.1:8000') as m:
cfg = DockerSandboxConfig(tools_config={'python_executor': {}})
sid = await m.create_sandbox(SandboxType.DOCKER, cfg)
r = await m.execute_tool(sid, 'python_executor', {'code': 'print("Hello remote")'})
print(r.output)
await m.delete_sandbox(sid)
asyncio.run(main())Why:
- Amortize container startup by keeping a fixed-size pool of ready sandboxes.
- Each execution borrows a sandbox and returns it; requests queue FIFO when all are busy.
Local pool example:
import asyncio
from ms_enclave.sandbox.manager import LocalSandboxManager
from ms_enclave.sandbox.model import DockerSandboxConfig, SandboxType
async def main():
async with LocalSandboxManager() as m:
cfg = DockerSandboxConfig(
image='python:3.11-slim',
tools_config={'python_executor': {}}
)
# Create a pool of 2 pre-warmed sandboxes
await m.initialize_pool(pool_size=2, sandbox_type=SandboxType.DOCKER, config=cfg)
# Execute multiple tasks; sandboxes are reused and queued FIFO when busy
tasks = [
m.execute_tool_in_pool('python_executor', {'code': f'print("task {i}")', 'timeout': 30})
for i in range(5)
]
results = await asyncio.gather(*tasks)
print([r.output.strip() for r in results])
# Pool stats
stats = await m.get_stats()
print('pool_size =', stats['pool_size'])
asyncio.run(main())HTTP pool example:
import asyncio
from ms_enclave.sandbox.manager import HttpSandboxManager
from ms_enclave.sandbox.model import DockerSandboxConfig, SandboxType
async def main():
async with HttpSandboxManager(base_url='http://127.0.0.1:8000') as m:
cfg = DockerSandboxConfig(image='python:3.11-slim', tools_config={'python_executor': {}})
await m.initialize_pool(pool_size=2, sandbox_type=SandboxType.DOCKER, config=cfg)
r = await m.execute_tool_in_pool('python_executor', {'code': 'print("hello from pool")', 'timeout': 30})
print(r.output)
asyncio.run(main())Notes:
- Waiting timeout:
await m.execute_tool_in_pool(..., timeout=1.0)raisesTimeoutErrorif no sandbox is available in time. - FIFO behavior: pool borrows/returns in FIFO order under load.
- Errors: even if a tool execution fails, the sandbox is returned to the pool.
Current built-in sandbox types:
-
DOCKER (General container execution)
- Supported tools:
- python_executor (Execute Python code)
- shell_executor (Execute Shell commands)
- file_operation (Read/write/delete/list files)
- multi_code_executor (Multi-language code execution, supports python, cpp, csharp, go, java, nodejs, ts, rust, php, bash, pytest, jest, go_test, lua, r, perl, d_ut, ruby, scala, julia, kotlin_script, verilog, lean, swift, racket) Requires specifying image
volcengine/sandbox-fusion:server-20250609
- Features: Configurable memory/CPU limits, volume mounts, network toggle, privileged mode, port mapping
- Supported tools:
-
DOCKER_NOTEBOOK (Jupyter Kernel Gateway environment)
- Supported tools:
- notebook_executor (Execute code through Jupyter kernel, supports saving code context)
- Note: This type only loads notebook_executor; other DOCKER-specific tools won't be enabled in this sandbox
- Dependencies: Requires port 8888 exposed, network enabled
- Supported tools:
Tool loading rules:
- Tools are only initialized and available when explicitly declared in
tools_config - Tools validate
required_sandbox_type, automatically ignored if mismatched
Example:
DockerSandboxConfig(tools_config={'python_executor': {}, 'shell_executor': {}, 'file_operation': {}})
DockerNotebookConfig(tools_config={'notebook_executor': {}})image: Docker image name (e.g.,python:3.11-slimorjupyter-kernel-gateway)memory_limit: Memory limit (e.g.,512m/1g)cpu_limit: CPU limit (float, >0)volumes: Volume mounts, formatted as{host_path: {"bind": "/container/path", "mode": "rw"}}ports: Port mapping, formatted as{ "8888/tcp": ("127.0.0.1", 8888) }network_enabled: Whether to enable network (Notebook sandbox requires True)remove_on_exit: Whether to delete container on exit (default True)
Manager Config (SandboxManagerConfig):
base_url: If set, HttpSandboxManager is selected automaticallycleanup_interval: Background cleanup interval in seconds (local manager)
Example of Installing Additional Dependencies in Sandbox
async with SandboxFactory.create_sandbox(SandboxType.DOCKER, config) as sandbox:
# 1) Write a file
requirements_file = '/sandbox/requirements.txt'
await sandbox.execute_tool('file_operation', {
'operation': 'write', 'file_path': f'{requirements_file}', 'content': 'numpy\npandas\nmodelscope\n'
})
# 2) Execute Python code
result = await sandbox.execute_tool('python_executor', {
'code': f"print('Hello from sandbox!')\nprint(open(f'{requirements_file}').read())"
})
print(result.output)
# 3) Execute CLI
result_cli = await sandbox.execute_command(f'pip install -r {requirements_file}')
print(result_cli.stdout, flush=True)Example of Reading/Writing Host Files in Sandbox
async with LocalSandboxManager() as manager:
# Create sandbox
config = DockerSandboxConfig(
# image='python-sandbox',
image='python:3.11-slim',
tools_config={'python_executor': {}, 'file_operation': {}},
volumes={'~/Code/ms-enclave/output': {'bind': '/sandbox/data', 'mode': 'rw'}}
)
sandbox_id = await manager.create_sandbox(SandboxType.DOCKER, config)
# Write file
result = await manager.execute_tool(
sandbox_id, 'file_operation', {'operation': 'write', 'file_path': '/sandbox/data/hello.txt', 'content': 'Hello, Sandbox!'}
)
print(result.model_dump())result = await sandbox.execute_tool('python_executor', {'code': 'print(1/0)'})
if result.error:
print('Error message:', result.error)
else:
print('Output:', result.output)# Clone repository
git clone https://github.com/modelscope/ms-enclave.git
cd ms-enclave
# Create virtual environment
conda create -n ms-enclave python=3.10 -y
conda activate ms-enclave
# Install dependencies
pip install -e ".[dev]"
# Run tests
pytest
# Run examples (provided in repository)
python examples/sandbox_usage_examples.py
python examples/local_manager_example.py
python examples/server_manager_example.pyWe welcome contributions! Please check CONTRIBUTING.md for details.
- Fork the repository
- Create a feature branch:
git checkout -b feature/amazing-feature - Develop and add tests
- Run tests locally:
pytest - Commit changes:
git commit -m 'Add amazing feature' - Push branch:
git push origin feature/amazing-feature - Submit Pull Request
This project is licensed under the Apache 2.0 License. See LICENSE for details.
