This repository contains the OrionTraining and AthenaTraining projects, where training and validation processes for language models have been carried out for the comprehension, transformation, and evolution of the Orion [1] and Athena [2] DSLs.
[1] Alberto HernΓ‘ndez ChillΓ³n, Meike Klettke, Diego Sevilla Ruiz, JesΓΊs GarcΓa Molina: A Generic Schema Evolution Approach for NoSQL and Relational Databases. IEEE Trans. Knowl. Data Eng. 36(7): 2774-2789 (2024) (https://ieeexplore.ieee.org/abstract/document/10420500)
[2] Alberto HernΓ‘ndez ChillΓ³n, Diego Sevilla Ruiz, JesΓΊs GarcΓa Molina: Athena: A Database-Independent Schema Definition Language. ER (Workshops) 2021: 33-42 (https://www.researchgate.net/publication/355185841_Athena_A_Database-Independent_Schema_Definition_Language)
Each project follows the same internal organization, separating the training and testing phases, along with the corresponding prompts used. In addition, a conversation with the model is included, following the prompts that were executed but with minimal modifications.
- /
- π .AthenaTraining/
- π Learning/
- π 1-Step (Formal Definition)/
- π Formal Specification.txt
- π 2-Step (Articles)/
- π Athena.png
- π ChapterAthena.pdf
- π DesignAthena.pdf
- π 3-Step (Examples)/
- π CentroDeportivo/
- π CentroDeportivo.athena
- π CentroDeportivo.cql
- π CentroDeportivo.js
- π CentroDeportivo.sql
- π SoftwareDev/
- π SoftwareDev.athena
- π SoftwareDev.cql
- π SoftwareDev.js
- π SoftwareDev.sql
- π SoftwareProject/
- π SoftwareProject.athena
- π SoftwareProject.cql
- π SoftwareProject.js
- π SoftwareProject.sql
- π Umugram/
- π Umugram.athena
- π Umugram.cql
- π Umugram.js
- π Umugram.sql
- π Vigilancias/
- π Vigilancias.athena
- π Vigilancias.cql
- π Vigilancias.js
- π Vigilancias.sql
- π CentroDeportivo/
- π Prompt.txt
- π 1-Step (Formal Definition)/
- π Testing/
- π Athena2Schema/
- π EduPlatform.athena
- π Schema2Athena/
- π Cassandra2Athena.cql
- π MongoValidator2Athena.js
- π NaturalLanguage2Athena.txt
- π SQL2Athena.sql
- π Prompt.txt
- π Athena2Schema/
- π Learning/
- π .OrionTraining/
- π Learning/
- π 1-Step (Formal Definition)/
- π Formal Specification.txt
- π 2-Step (Articles)/
- π Athena.txt
- π ChapterAthena.pdf
- π DesignAthena.pdf
- π 3-Step (Examples)/
- π GameTracker/
- π GameTracker1.athena
- π GameTracker2.athena
- π GameTrackerChange.cql
- π GameTrackerChange.cypher
- π GameTrackerChange.js
- π GameTrackerChange.orion
- π GameTrackerChange.sql
- π RunningSong/
- π RunningSong1.athena
- π RunningSong2.athena
- π RunningSong3.athena
- π RunningSongChange.cql
- π RunningSongChange.cypher
- π RunningSongChange.js
- π RunningSongChange.orion
- π RunningSongChange.sql
- π GameTracker/
- π Prompt.txt
- π 1-Step (Formal Definition)/
- π Testing/
- π Orion2Schema/
- π EduPlatform.athena
- π EduPlatformChange.orion
- π Schema2Orion/
- π CQL2Orion.cql
- π MongoDB2Orion.js
- π Neo4j2Orion.cypher
- π SQL2Orion.sql
- π Prompt.txt
- π Orion2Schema/
- π Learning/
- π .M2T/
- π Athena/
- π Athena2Cassandra.xtend
- π Athena2MongoDBShemaValidator.xtend
- π Athena2MySQL.xtend
- π Orion/
- π Orion2Cassandra.xtend
- π Orion2MongoDB.xtend
- π Orion2MySQL.xtend
- π utils/
- π MongoDBTransactionModule.xtend
- π SqlProcedureModule.xtend
- π Athena/
- π .AthenaTraining/
Each prompt.txt file contains multiple prompts used to train and evaluate the model.
The prompts are separated by the delimiter "----", which allows for a clear differentiation of each query or instruction given to the model.
- Learning folder: Contains the prompts designed for the model to learn the structure and rules of each DSL, including transformations to different database schemas.
- Testing folder: Contains the prompts used to evaluate the language model's ability to understand and transform code from the DSLs.
You can see the example conversations here:
Athena: https://chatgpt.com/share/689a0551-d5f4-800b-9adb-98eb7e14cfa4
Orion: https://chatgpt.com/share/68961d20-1aa8-800b-b9bd-2eca64d7cf1f
- Review the prompts.
- Execute the prompts.
- Evaluate results. Some results will require clarification to improve the model.