Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
149 changes: 149 additions & 0 deletions BIC_codes/FCS_estimate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,149 @@
from functions.dFC_funcs import *

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

in general avoid import * as it pollutes the namespace and makes it hard to know where names come from.
linting tools will complain about it; it's a good idea to use them -- have a look for example at pylint and flake8

import numpy as np
import time
import hdf5storage
import scipy.io as sio
import os
os.environ["MKL_NUM_THREADS"] = '64'
os.environ["NUMEXPR_NUM_THREADS"] = '64'
os.environ["OMP_NUM_THREADS"] = '64'

print('################################# CODE started running ... #################################')

################################# Parameters #################################

###### DATA PARAMETERS ######

output_root = './../../../../../RESULTs/methods_implementation/'

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

  • consider putting paths in env variables or a config files rather than source files
  • use pathlib to manipulate filesystem paths

# output_root = '/data/origami/dFC/RESULTs/methods_implementation/'
# output_root = '/Users/mte/Documents/McGill/Project/dFC/RESULTs/methods_implementation/'

# DATA_type is either 'sample' or 'Gordon' or 'simulated' or 'ICA'
params_data_load = { \
'DATA_type': 'Gordon', \

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

you don't need these backticks

'SESSIONs':['Rest1_LR' , 'Rest1_RL', 'Rest2_LR', 'Rest2_RL'], \

'data_root_simul': './../../../../DATA/TVB data/', \
'data_root_sample': './sampleDATA/', \
'data_root_gordon': './../../../../DATA/HCP/HCP_Gordon/', \
'data_root_ica': './../../../../DATA/HCP/HCP_PTN1200/node_timeseries/3T_HCP1200_MSMAll_d50_ts2/'
}

###### MEASUREMENT PARAMETERS ######

# W is in sec

params_methods = { \
# Sliding Parameters
'W': 44, 'n_overlap': 0.5, 'sw_method':'pear_corr', 'tapered_window':True, \
# TIME_FREQ
'TF_method':'WTC', \
# CLUSTERING AND DHMM
'clstr_base_measure':'SlidingWindow', \
# HMM
'hmm_iter': 50, 'n_hid_states': 24, \
# State Parameters
'n_states': 12, 'n_subj_clstrs': 20, \
# Parallelization Parameters
'n_jobs': 2, 'verbose': 0, 'backend': 'loky', \
# SESSION
'session': 'Rest1_LR', \
# Hyper Parameters
'normalization': True, \
'num_subj': 395, \
'num_select_nodes': 333, \
'num_time_point': 1200, \
'Fs_ratio': 1.00, \
'noise_ratio': 0.00, \
'num_realization': 1 \
}

###### HYPER PARAMETERS ALTERNATIVE ######

MEASURES_name_lst = [ \
'SlidingWindow', \
'Time-Freq', \
'CAP', \
'ContinuousHMM', \
'Windowless', \
'Clustering', \
'DiscreteHMM' \
]

alter_hparams = { \
# 'session': [], \
'n_states': [6], \
# 'normalization': [], \
# 'num_subj': [5], \
# 'num_select_nodes': [50], \
# 'num_time_point': [500], \
'Fs_ratio': [0.40], \
'noise_ratio': [2.00], \
# 'num_realization': [] \
}

###### dFC ANALYZER PARAMETERS ######

params_dFC_analyzer = { \
# VISUALIZATION
'vis_TR_idx': list(range(10, 20, 1)),'save_image': True, 'output_root': output_root, \
# Parallelization Parameters
'n_jobs': 8, 'verbose': 0, 'backend': 'loky' \
}


################################# LOAD DATA #################################

data_loader = DATA_LOADER(**params_data_load)
BOLD = data_loader.load()

################################# Visualize BOLD #################################

# for session in BOLD:
# BOLD[session].visualize(start_time=0, end_time=50, nodes_lst=list(range(10)), \
# save_image=params_dFC_analyzer['save_image'], output_root=output_root+'BOLD_signal_'+session)

################################# Measures of dFC #################################

dFC_analyzer = DFC_ANALYZER( \
analysis_name='reproducibility assessment', \
**params_dFC_analyzer \
)

MEASURES_lst = dFC_analyzer.measures_initializer( \
MEASURES_name_lst, \
params_methods, \
alter_hparams \
)

tic = time.time()
print('Measurement Started ...')

################################# estimate FCS #################################

task_id = int(os.getenv("SGE_TASK_ID"))
MEASURE_id = task_id-1 # SGE_TASK_ID starts from 1 not 0


if MEASURE_id >= len(MEASURES_lst):
print("MEASURE_id out of MEASURES_lst ")
else:
measure = MEASURES_lst[MEASURE_id]

print("FCS estimation started...")

time_series = BOLD[measure.params['session']]
if measure.is_state_based:
measure.estimate_FCS(time_series=time_series)

# dFC_analyzer.estimate_group_FCS(time_series_dict=BOLD)
print("FCS estimation done.")

print('Measurement required %0.3f seconds.' % (time.time() - tic, ))

# Save
np.save('./fitted_MEASURES/MEASURE_'+str(MEASURE_id)+'.npy', measure)
np.save('./dFC_analyzer.npy', dFC_analyzer)
np.save('./data_loader.npy', data_loader)

#################################################################################
172 changes: 172 additions & 0 deletions BIC_codes/dFC_assessment.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,172 @@
from functions.dFC_funcs import *
import numpy as np
import time
import hdf5storage
import scipy.io as sio
import os
os.environ["MKL_NUM_THREADS"] = '64'
os.environ["NUMEXPR_NUM_THREADS"] = '64'
os.environ["OMP_NUM_THREADS"] = '64'

print('################################# subject-level dFC assessment CODE started running ... #################################')

################################# Parameters #################################

# subj_id = '100206'

###### DATA PARAMETERS ######

output_root = './../../../../../RESULTs/methods_implementation/'
# output_root = '/data/origami/dFC/RESULTs/methods_implementation/'
# output_root = '/Users/mte/Documents/McGill/Project/dFC/RESULTs/methods_implementation/'

################################# LOAD #################################

dFC_analyzer = np.load('./dFC_analyzer.npy',allow_pickle='TRUE').item()
data_loader = np.load('./data_loader.npy',allow_pickle='TRUE').item()

################################# LOAD FIT MEASURES #################################

if dFC_analyzer.MEASURES_fit_lst==[]:
ALL_RECORDS = os.listdir('./fitted_MEASURES/')
ALL_RECORDS = [i for i in ALL_RECORDS if 'MEASURE' in i]
ALL_RECORDS.sort()
MEASURES_fit_lst = list()
for s in ALL_RECORDS:
fit_measure = np.load('./fitted_MEASURES/'+s,allow_pickle='TRUE').item()
MEASURES_fit_lst.append(fit_measure)
dFC_analyzer.set_MEASURES_fit_lst(MEASURES_fit_lst)
print('fitted MEASURES loaded ...')
# np.save('./dFC_analyzer.npy', dFC_analyzer)

################################# LOAD DATA #################################

task_id = int(os.getenv("SGE_TASK_ID"))
subj_id = data_loader.SUBJECTS[task_id-1] # SGE_TASK_ID starts from 1 not 0

BOLD = data_loader.load(subj_id2load=subj_id)

################################# dFC ASSESSMENT #################################

tic = time.time()
print('Measurement Started ...')

print("dFCM estimation started...")
dFCM_dict = dFC_analyzer.subj_lvl_dFC_assess(time_series_dict=BOLD)
# SUBJ_output = dFC_analyzer.group_dFCM_assess(time_series_dict=BOLD)
print("dFCM estimation done.")

print('Measurement required %0.3f seconds.' % (time.time() - tic, ))


################################# POST ANALYSIS #################################

SUBJ_output = {}

dFCM_lst = dFCM_dict['dFCM_lst']

# Save dFC samples
common_TRs = TR_intersection(dFCM_lst)
dFCM_sample_dict = {}
dFCM_sample_dict['common_TRs'] = common_TRs
dFCM_sample_dict['dFCM'] = {}
for i, dFCM in enumerate(dFCM_lst):
dFCM_sample = dFCM.get_dFC_mat(TRs=common_TRs)
dFCM_sample_dict['dFCM'][str(i)] = {}
dFCM_sample_dict['dFCM'][str(i)]['mat'] = dFCM_sample
dFCM_sample_dict['dFCM'][str(i)]['info'] = dFCM.measure.info
np.save('./dFC_samples/SUBJ_'+str(subj_id)+'_dFC.npy', dFCM_sample_dict)

########################## DEFAULT VALUES #######################

param_dict = dFC_analyzer.params_methods
analysis_name_lst = [ \
'corr_mat', \
'dFC_distance', \
'dFC_distance_var', \
'FO', \
'CO', \
'TP', \
'trans_freq' \
]
dFCM_lst2check = filter_dFCM_lst(dFCM_lst, **param_dict)
SUBJ_output['default_values'] = dFC_analyzer.post_analysis( \
dFCM_lst=dFCM_lst2check, \
analysis_name_lst=analysis_name_lst \
)

########################## 6_states #######################

param_dict = {'n_states': [6], 'is_state_based': [True]}
analysis_name_lst = [ \
'corr_mat', \
'dFC_distance', \
'dFC_distance_var', \
'FO', \
'CO', \
'TP', \
'trans_freq' \
]
dFCM_lst2check = filter_dFCM_lst(dFCM_lst, **param_dict)
SUBJ_output['6_states'] = dFC_analyzer.post_analysis( \
dFCM_lst=dFCM_lst2check, \
analysis_name_lst=analysis_name_lst \
)

########################## SlidingWindow_100_nodes #######################

param_dict = {'measure_name': ['SlidingWindow'], 'num_select_nodes': [100]}
analysis_name_lst = [ \
'corr_mat', \
'dFC_distance', \
'dFC_distance_var', \
'FO', \
'CO', \
'TP', \
'trans_freq' \
]
dFCM_lst2check = filter_dFCM_lst(dFCM_lst, **param_dict)
SUBJ_output['SlidingWindow_100_nodes'] = dFC_analyzer.post_analysis( \
dFCM_lst=dFCM_lst2check, \
analysis_name_lst=analysis_name_lst \
)

########################## Fs_ratio_0.5 #######################

param_dict = {'Fs_ratio': [0.5]}
analysis_name_lst = [ \
'corr_mat', \
'dFC_distance', \
'dFC_distance_var', \
'FO', \
'CO', \
'TP', \
'trans_freq' \
]
dFCM_lst2check = filter_dFCM_lst(dFCM_lst, **param_dict)
SUBJ_output['Fs_ratio_0.5'] = dFC_analyzer.post_analysis( \
dFCM_lst=dFCM_lst2check, \
analysis_name_lst=analysis_name_lst \
)

########################## noise_ratio_1 #######################

param_dict = {'noise_ratio': [1.0]}
analysis_name_lst = [ \
'corr_mat', \
'dFC_distance', \
'dFC_distance_var', \
'FO', \
'CO', \
'TP', \
'trans_freq' \
]
dFCM_lst2check = filter_dFCM_lst(dFCM_lst, **param_dict)
SUBJ_output['noise_ratio_1'] = dFC_analyzer.post_analysis( \
dFCM_lst=dFCM_lst2check, \
analysis_name_lst=analysis_name_lst \
)

# Save
np.save('./dFC_assessed/SUBJ_'+str(subj_id)+'_output.npy', SUBJ_output)
#################################################################################
Empty file added BIC_codes/functions/__init__.py
Empty file.
Loading