This repository contains the code for ALLM-Ab, a multi-objective antibody optimization framework using protein language models.
- allmab_offline: Evaluation of active learning in offline settings using BindingGYM dataset
- allmab_online: Implementation of active learning in online settings using Flex ddG
The easiest way is to install the dependencies listed in pyproject.toml using uv.
git clone https://github.com/your-username/ALLM-Ab.git
cd ALLM-Ab
uv syncOptional: Flex ddG installation is required for the allmab_online component.
The datasets can be obtained from BindingGYM:
git clone https://github.com/luwei0917/BindingGYMExample:
python al_run.py exps/outputs_ablang/0/greedy_0.0/dms_0_N-50_ini-1/config.yamlExample:
cd allmab_online
python al_run.py configs/5A12_dual/ablang2/greedy_dual.yamlA filling mode that supports general online active learning processes is available as follows.
cd allmab_online
python al_run_filling.py sample.yaml- allmab_offline: Offline environment for protein binding simulation
- allmab_online: Online analysis using Flex ddG
- notebooks: Jupyter notebooks for analysis
- reproduction_bindinggym.ipynb: Notebook for reproducing bindinggym results
- reproduction_flexddg.ipynb: Notebook for reproducing flexddg results
- analysis: Analysis notebooks
- results: Results from experiments
- allmab_offline: Results from allmab_offline
- allmab_online: Results from allmab_online
Furui K, Ohue M. ALLM-Ab: Active Learning-Driven Antibody Optimization Using Fine-Tuned Protein Language Models. Journal of Chemical Information and Modeling, Article ASAP, 2025. https://doi.org/10.1021/acs.jcim.5c01577
