Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 20 additions & 0 deletions src/graphpro/annotations.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
from graphpro.util.dssp import compute_dssp, DSSP_CLASS
from graphpro.util.polarity import POLARITY_CLASSES, residue_polarity
from graphpro.util.conservation import ConservationScoreClient
from graphpro.util.energy import compute_bt_potential

class NodeTargetBinaryAttribute(NodeTarget):
""" Binary target, creates a binary one_hot encoding of the property
Expand Down Expand Up @@ -210,6 +211,25 @@ def generate(self, G: Graph, atom_group: AtomGroup):
node_id = G.get_node_by_resid(resid)
G.node_attr_add(node_id,self.attr_name, score)

def encode(self, G: Graph) -> torch.tensor:
scores = [G.node_attr(n)[self.attr_name] if self.attr_name in G.node_attr(n) else 0 for n in G.nodes()]
return F.normalize(torch.tensor([scores], dtype=torch.float).T, dim=(0,1))

class BT_Potential(NodeAnnotation):
"""Computes residue energy contribution based on BT potential
"""
def __init__(self, attr_name: str = 'bt_potential', chain: str = None):
""" Attribute name
"""
self.attr_name = attr_name
self.chain = chain

def generate(self, G, atom_group):
res_ids, eigen_potential = compute_bt_potential(atom_group, self.chain)
for i,resid in enumerate(res_ids):
node_id = G.get_node_by_resid(resid)
G.node_attr_add(node_id, self.attr_name, eigen_potential[i])

def encode(self, G: Graph) -> torch.tensor:
scores = [G.node_attr(n)[self.attr_name] if self.attr_name in G.node_attr(n) else 0 for n in G.nodes()]
return F.normalize(torch.tensor([scores], dtype=torch.float).T, dim=(0,1))
68 changes: 68 additions & 0 deletions src/graphpro/util/energy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
import numpy as np

_residue_order = ['CYS','PHE','LEU','TRP','VAL','ILE','MET','HIS','TYR','ALA',
'GLY','PRO','ASN','THR','SER','ARG','GLN','ASP','LYS','GLU']

_bt_data = [
[1.34, -0.53, -0.5, -0.74, -0.51, -0.48, -0.49, -0.19, -0.16, -0.26, -0.09, -0.18, 0.28, 0, 0.09, 0.32, 0.04, 0.38, 0.35, 0.46],
[-0.53, -0.82, -0.78, -0.78, -0.67, -0.65, -0.89, -0.19, -0.49, -0.33, 0.11, -0.19, 0.29, 0, 0.1, 0.08, -0.04, 0.48, 0.11, 0.34],
[-0.5, -0.78, -0.81, -0.7, -0.8, -0.79, -0.68, 0.1, -0.44, -0.37, 0.14, -0.08, 0.36, 0, 0.26, 0.09, 0.08, 0.62, 0.16, 0.37],
[-0.74, -0.78, -0.7, -0.74, -0.62, -0.65, -0.94, -0.46, -0.55, -0.4, -0.24, -0.73, -0.09, 0, 0.07, -0.41, -0.11, 0.06, -0.28, -0.15],
[-0.51, -0.67, -0.8, -0.62, -0.72, -0.68, -0.47, 0.18, -0.27, -0.38, 0.04, -0.08, 0.39, 0, 0.25, 0.17, 0.17, 0.66, 0.16, 0.41],
[-0.48, -0.65, -0.79, -0.65, -0.68, -0.6, -0.6, 0.19, -0.33, -0.35, 0.21, 0.05, 0.55, 0, 0.35, 0.18, 0.14, 0.54, 0.21, 0.38],
[-0.49, -0.89, -0.68, -0.94, -0.47, -0.6, -0.56, -0.17, -0.51, -0.23, 0.08, -0.16, 0.32, 0, 0.32, 0.17, -0.01, 0.62, 0.22, 0.24],
[-0.19, -0.19, 0.1, -0.46, 0.18, 0.19, -0.17, -0.33, -0.21, 0.21, 0.23, -0.05, 0.1, 0, 0.15, 0.04, 0.22, -0.22, 0.26, -0.11],
[-0.16, -0.49, -0.44, -0.55, -0.27, -0.33, -0.51, -0.21, -0.27, -0.15, -0.04, -0.4, 0.01, 0, 0.07, -0.37, -0.18, -0.07, -0.4, -0.16],
[-0.26, -0.33, -0.37, -0.4, -0.38, -0.35, -0.23, 0.21, -0.15, -0.2, -0.03, 0.07, 0.24, 0, 0.15, 0.27, 0.21, 0.3, 0.2, 0.43],
[-0.09, 0.11, 0.14, -0.24, 0.04, 0.21, 0.08, 0.23, -0.04, -0.03, -0.2, -0.01, 0.1, 0, 0.1, 0.14, 0.2, 0.17, 0.12, 0.48],
[-0.18, -0.19, -0.08, -0.73, -0.08, 0.05, -0.16, -0.05, -0.4, 0.07, -0.01, -0.07, 0.13, 0, 0.17, -0.02, -0.05, 0.25, 0.12, 0.26],
[0.28, 0.29, 0.36, -0.09, 0.39, 0.55, 0.32, 0.1, 0.01, 0.24, 0.1, 0.13, -0.04, 0, 0.14, 0.02, -0.05, -0.12, -0.14, -0.01],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0.09, 0.1, 0.26, 0.07, 0.25, 0.35, 0.32, 0.15, 0.07, 0.15, 0.1, 0.17, 0.14, 0, 0.13, 0.12, 0.25, 0.01, 0.1, 0.1],
[0.32, 0.08, 0.09, -0.41, 0.17, 0.18, 0.17, 0.04, -0.37, 0.27, 0.14, -0.02, 0.02, 0, 0.12, 0.13, -0.12, -0.71, 0.5, -0.75],
[0.04, -0.04, 0.08, -0.11, 0.17, 0.14, -0.01, 0.22, -0.18, 0.21, 0.2, -0.05, -0.05, 0, 0.25, -0.12, 0.14, 0.12, -0.2, 0.1],
[0.38, 0.48, 0.62, 0.06, 0.66, 0.54, 0.62, -0.22, -0.07, 0.3, 0.17, 0.25, -0.12, 0, 0.01, -0.71, 0.12, 0.27, -0.69, 0.4],
[0.35, 0.11, 0.16, -0.28, 0.16, 0.21, 0.22, 0.26, -0.4, 0.2, 0.12, 0.12, -0.14, 0, 0.1, 0.5, -0.2, -0.69, 0.38, -0.87],
[0.46, 0.34, 0.37, -0.15, 0.41, 0.38, 0.24, -0.11, -0.16, 0.43, 0.48, 0.26, -0.01, 0, 0.1, -0.75, 0.1, 0.4, -0.87, 0.45]
]

BT_potential = {}

for i, res1 in enumerate(_residue_order):
for j, res2 in enumerate(_residue_order):
BT_potential[(res1, res2)] = _bt_data[i][j]

def bt_potential(res1, res2):
def normalize_res_name(res_name):
if res_name in ('HSD', 'HSE', 'HSP'):
return 'HIS'
return res_name
return BT_potential[(normalize_res_name(res1), normalize_res_name(res2))]


def compute_bt_potential(atom_group, chain, cutoff=6, epsilon=1):
from scipy.spatial import distance
from numpy import linalg as LA

ca_position = atom_group.c_alphas_positions(chain)
residues = atom_group.c_alphas_residues(chain)
dist = distance.squareform(distance.pdist(ca_position))
potential = np.zeros((len(dist), len(dist)))
res_ids = [res['resid'] for res in residues]

for i in range(len(dist)):
for j in range(i + 1, len(dist)):
resname_i = residues[i]['resname']
resname_j = residues[j]['resname']

V_ij = bt_potential(resname_i, resname_j)
r_ij = dist[i,j]

if r_ij < cutoff:
# Lennard-Jones weight on distance
energy = epsilon * V_ij * ((cutoff / r_ij) ** 6 - (cutoff / r_ij) ** 12)
potential[i,j] = energy
potential[j,i] = energy

eigen_value, _ = LA.eig(potential)
return res_ids, eigen_value
22 changes: 22 additions & 0 deletions test/graphpro/annnotations/energy_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
import torch
import MDAnalysis as mda

from graphpro import md_analisys
from graphpro.graphgen import ContactMap
from graphpro.annotations import BT_Potential

from MDAnalysis.tests.datafiles import PDB_small

u1 = mda.Universe(PDB_small)

def test_bt_potential_calculation():
G = md_analisys(u1).generate(ContactMap(cutoff=6), [BT_Potential()])
assert len(G.nodes()) == 214
assert G.node_attr(0)['bt_potential'] == -702.0824887338479

def test_gnm_encoding():
G = md_analisys(u1).generate(ContactMap(cutoff=6), [BT_Potential()])
data = G.to_data(node_encoders=[BT_Potential()])

assert data.x.size() == (214, 1)
assert data.x.dtype == torch.float
Loading