This project implements a Physics-Informed Neural Network (PINN) to solve the Hodgkin-Huxley model equations for neural action potentials.
-
verify_hh.py: Numerical solution using Scipy as a baseline. -
hodgkin_neural_net1.py: PINN implementation using PyTorch, including loss tracking. -
plot_results.py: Comparison between numerical and PINN results. -
show_values_and_plot_3d.py: 3D visualization of gating variables ($V$ ,$t$ ,$\alpha$ ).
- ODE Integration: Solves HH equations numerically.
- PINN Training: Trains a neural network with IC and ODE losses.
-
Visualization:
- Gating variable trajectories.
- 3D plots showing
$V(t, \alpha)$ . - Training loss history (log scale).
- Run the baseline:
python verify_hh.py - Train the PINN:
python hodgkin_neural_net1.py - Plot results:
python plot_results.py - 3D visualization:
python show_values_and_plot_3d.py