Skip to content

qiu1h/Titanic

Repository files navigation

Titanic - Kaggle competition

First try - Score:0.74162 / Rate: 14044

use Sex,Age,family=SibSp+Parch+1,SocialClass=Fare/Pclass,Cabin as feature

first_AccCurve.png fisrt_LearningCurve.png

Analyse: high variance and overfitting !

Second try - Score:0.76794 / Rate: 10523

Based on first-try's Analyse, changes are below:

  1. use less features
  2. use feature-regularizer

use Sex,Age,family=SibSp+Parch+1,SocialClass=Fare/Pclass as feature

use

model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(64, activation='relu', kernel_regularizer=L2(0.001)),
    tf.keras.layers.Dense(16, activation='relu', kernel_regularizer=L2(0.001)),
    tf.keras.layers.Dense(1, activation='sigmoid', kernel_regularizer=L2(0.001)),
])

instead of

model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.Dense(16, activation='relu'),
    tf.keras.layers.Dense(1, activation='sigmoid'),
])

second_AccCurve.png second_LearningCurve.png

About

A Kaggle competition: Titanic

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages