use Sex,Age,family=SibSp+Parch+1,SocialClass=Fare/Pclass,Cabin as feature
Analyse: high variance and overfitting !
Based on first-try's Analyse, changes are below:
- use less features
- use feature-regularizer
use Sex,Age,family=SibSp+Parch+1,SocialClass=Fare/Pclass as feature
use
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(64, activation='relu', kernel_regularizer=L2(0.001)),
tf.keras.layers.Dense(16, activation='relu', kernel_regularizer=L2(0.001)),
tf.keras.layers.Dense(1, activation='sigmoid', kernel_regularizer=L2(0.001)),
])
instead of
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(16, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid'),
])



