A multi-factor quantitative trading framework for cryptocurrency markets.
Phandas is a quantitative analysis framework designed for systematic portfolio construction and risk management. It provides high-performance data structures and financial analysis tools for factor investing and statistical arbitrage strategies.
Web Demo - Experience Phandas directly in your browser. No installation required.
- Data Fetching: Multi-source OHLCV data
- Factor Engine: 50+ time-series and cross-sectional operators
- Neutralization: Vector projection & regression-based orthogonalization
- Backtesting: Dollar-neutral strategies with dynamic rebalancing
- Performance Metrics: Sharpe, Sortino, Calmar, Max Drawdown, VaR
- MCP Integration: AI agents (Claude) can directly access Phandas via JSON config
pip install phandasfrom phandas import *
# Fetch market data
panel = fetch_data(
symbols=['ETH', 'SOL', 'ARB', 'OP', 'POL', 'SUI'],
timeframe='1d',
start_date='2023-01-01',
sources=['binance'],
)
# Extract factors
close = panel['close']
volume = panel['volume']
open = panel['open']
# Construct momentum factor
momentum_20 = (close / close.ts_delay(20)) - 1
# Neutralize against volume
factor = vector_neut(rank(momentum_20), rank(-volume))
# Backtest strategy
result = backtest(
entry_price_factor=open,
strategy_factor=factor,
transaction_cost=(0.0003, 0.0003)
)
result.plot_equity()Use Phandas with AI IDEs (Cursor, Claude Desktop) directly—no coding required.
Setup for Cursor (Recommended)
pip install phandas- Open Cursor → Settings → Tools & MCP → New MCP Server
- Paste the JSON config below, save and restart
{
"mcpServers": {
"phandas": {
"command": "python",
"args": ["-m", "phandas.mcp_server"]
}
}
}Available Tools (4 Functions)
fetch_market_data: Get OHLCV data for symbolslist_operators: Browse all 50+ factor operatorsread_source: View source code of any functionexecute_factor_backtest: Backtest custom factor expressions
一個專為加密貨幣市場設計的多因子量化交易框架。
Phandas 是一個為系統化投資組合構建與風險管理而設計的量化分析框架。它為因子投資與統計套利策略提供高效能的資料結構與金融分析工具。
網頁演示 - 直接在瀏覽器中體驗 Phandas,無需安裝。
- 資料獲取:多源 OHLCV 資料
- 因子引擎:50+ 時間序列與橫截面運算子
- 因子中性化:向量投影與迴歸正交化
- 回測引擎:美元中性策略、動態調倉
- 績效指標:夏普比、Sortino、Calmar、最大回撤、VaR
- MCP 集成:AI 代理(Claude)可直接調用 Phandas
pip install phandasfrom phandas import *
# 獲取市場資料
panel = fetch_data(
symbols=['ETH', 'SOL', 'ARB', 'OP', 'POL', 'SUI'],
timeframe='1d',
start_date='2023-01-01',
sources=['binance'],
)
# 提取因子
close = panel['close']
volume = panel['volume']
open = panel['open']
# 構建動量因子
momentum_20 = (close / close.ts_delay(20)) - 1
# 對成交量進行中性化
factor = vector_neut(rank(momentum_20), rank(-volume))
# 回測策略
result = backtest(
entry_price_factor=open,
strategy_factor=factor,
transaction_cost=(0.0003, 0.0003)
)
result.plot_equity()在 AI IDE(Cursor、Claude Desktop)中直接使用 Phandas—無需編碼。
Cursor 設定(推薦)
pip install phandas- 開啟 Cursor → Settings → Tools & MCP → New MCP Server
- 貼上下方 JSON 配置,儲存並重啟
{
"mcpServers": {
"phandas": {
"command": "python",
"args": ["-m", "phandas.mcp_server"]
}
}
}可用工具(4 個函數)
fetch_market_data: 獲取代幣 OHLCV 資料list_operators: 瀏覽 50+ 因子運算子read_source: 查看任何函數的源代碼execute_factor_backtest: 回測自訂因子表達式
- Full Docs - Complete API reference
- Operators Guide - 50+ operators
- MCP Setup - AI IDE integration
- Discord: Join us - Phantom Management
- GitHub Issues: Report bugs or request features
This project is licensed under the BSD 3-Clause License - see LICENSE file for details.
