Think Locally, Act Globally: A Frequency Spatial Fusion Network for Infrared Small Target Detection [Paper]
Weijie Xu, Zhenglong Ding, Ziheng Wang, Zhiqing Cui, Yifan Hu, and Feng Jiang, IEEE Transactions on Geoscience and Remote Sensing 2025.
We present a Frequency Spatial Fusion Network (FSCFNet) to the IRSTD task. Experiments on both public (e.g., IRSTD-1K, NUDT-SIRST, NUAA-SIRST) demonstrate the effectiveness of our method. Our main contributions are as follows:
-
The novel plug-and-play convolution module FSConv is designed, which integrates a DWT decomposer to capture both local details and global structural information in the additional frequency domain, preserving spatial characteristics at the same time.
-
The new cross-attention-based mechanism ACA is proposed to facilitate the feature fusion by focusing on the local central regions of IRST, effectively strengthening their salient spatial characteristics.
-
Inspired by Inception Architecture, we propose the customized MRCB to effectively capture long-range contextual dependencies using multi-scale dilated convolutions.
-
Extensive experiments across multiple datasets validate that FSCFNet maintains a lightweight design, while significantly improving both the accuracy and robustness of IRSTD.
The IRSTD-1K, NUDT-SIRST, and NUAA-SIRST datasets are used to train FSCFNet.
-
IRSTD-1K [download dir] [paper]
-
NUDT-SIRST [download] [paper]
-
NUAA-SIRST [download] [paper]
-
Our project has the following structure:
├──./datasets/ │ ├── IRSTD-1K │ │ ├── images │ │ │ ├── XDU0.png │ │ │ ├── XDU1.png │ │ │ ├── ... │ │ ├── labels │ │ │ ├── XDU0.txt │ │ │ ├── XDU1.txt │ │ │ ├── ... │ │ ├── img_idx │ │ │ ├── train_IRSTD-1K.txt │ │ │ ├── test_IRSTD-1K.txt │ ├── NUDT-SIRST │ │ ├── images │ │ │ ├── 000001.png │ │ │ ├── 000002.png │ │ │ ├── ... │ │ ├── labels │ │ │ ├── 000001.txt │ │ │ ├── 000002.txt │ │ │ ├── ... │ │ ├── img_idx │ │ │ ├── train_NUDT-SIRST.txt │ │ │ ├── test_NUDT-SIRST.txt │ ├── NUAA-SIRST │ │ ├── images │ │ │ ├── Misc_1.png │ │ │ ├── Misc_2.png │ │ │ ├── ... │ │ ├── labels │ │ │ ├── Misc_1.txt │ │ │ ├── Misc_2.txt │ │ │ ├── ... │ │ ├── img_idx │ │ │ ├── train_NUAA-SIRST.txt │ │ │ ├── test_NUAA-SIRST.txt
python train.py*The overall repository style is highly borrowed from ultralytics. Thanks to ultralytics.
If you find the code useful, please consider citing our paper using the following BibTeX entry.
@ARTICLE{11175146,
author={Xu, Weijie and Ding, Zhenglong and Wang, Ziheng and Cui, Zhiqing and Hu, Yifan and Jiang, Feng},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={Think Locally and Act Globally: A Frequency–Spatial Fusion Network for Infrared Small Target Detection},
year={2025},
volume={63},
number={},
pages={1-17},
keywords={Power capacitors;Frequency-domain analysis;Feature extraction;Convolution;Accuracy;Training;Location awareness;Discrete wavelet transforms;Clutter;Artificial intelligence;Attention mechanism;frequency–spatial domain fusion;infrared small target detection (IRSTD);remote sensing;wavelet transform (WT)},
doi={10.1109/TGRS.2025.3612417}}
Welcome to raise issues or email to wjxu@nuist.edu.cn for any question regarding our FSCFNet.





