Skip to content

sanctuarycomputer/intelligence.family

Repository files navigation

Family Intelligence Benchmarks

This is a repo for benchmarking some local LLM calls around voice fingerprinting, transcription, & text generation.

This container is designed to run on a small chipset, like a Raspberry Pi 5, NVIDIA Jetson Orin Nano, or NVIDIA Jetson Thor.

Download Repo

NVIDIA's Jetson OS ships with git and Docker, so on those chips, you just need to run

git clone

Install models

Run this on the Orin or Thor host OS (not inside Docker)

sudo nvpmodel -m 0 # Sets to max power mode sudo jetson_clocks # Locks clocks to maximum frequency

docker build \
  --build-arg BASE_IMAGE=ubuntu:22.04 \
  --build-arg DEVICE_TYPE=pi \
  -t intelfam:pi .

docker build \
  --build-arg BASE_IMAGE=nvcr.io/nvidia/l4t-jetpack:r36.4.0 \
  --build-arg DEVICE_TYPE=orin \
  -t intelfam:orin .

docker build \
  --build-arg BASE_IMAGE=nvcr.io/nvidia/pytorch:25.08-py3 \
  --build-arg DEVICE_TYPE=thor \
  -t intelfam:thor .

Download Models

docker run --rm -it \
  -e HF_TOKEN=your_token_here \
  -v ./models:/app/models \
  intelfam:thor python3 download_models.py

Run benchmarks

First, disconnect your device from WiFi. The benchmark script is runs entirely offline, so this should give you confidence no cloud calls are being made.

docker run --rm --network none intelfam:pi

docker run --rm \
  --runtime=nvidia \
  --network=none \
  --cpuset-cpus="1-5" \
  --shm-size=2g \
  -e NVIDIA_DRIVER_CAPABILITIES=all \
  intelfam:jetson

Results

Raspberry Pi 5

Base OS:

NVIDIA Jetson Orin Nano

Base OS:

NVIDIA Jetson AGX Thor

**Base OS: **

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published