Skip to content

Data analysis and visualization of the Youtube content of a specific search query

License

Notifications You must be signed in to change notification settings

tharikashree/Youtube-Data-Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Youtube-Data-Analysis

Data analysis and visualization of the Youtube content of a specific search query

📌 Project Overview

This project analyzes YouTube video data to gain insights into trends, performance, and engagement metrics. It involves data collection, preprocessing and visualization to understand the factors influencing video popularity.

🚀 Features

  • Data Collection: Extracts video metadata (title, views, likes, comments, duration, etc.) using YouTube API or web scraping.
  • Data Preprocessing: Cleans and formats the dataset by handling missing values and converting data types.
  • Exploratory Data Analysis (EDA): Generates visualizations to analyze trends in video performance.
  • Statistical Insights: Identifies correlations between video attributes and engagement metrics.

🛠️ Technologies Used

  • Programming Language: Python
  • Libraries: Pandas, Matplotlib, Requests, Time, Nltk
  • Data Sources: Web Scraping (BeautifulSoup, Selenium)
  • Version Control: Git, GitHub

📂 Project Structure

YouTube-Data-Analysis/
│── Youtube_Videos.xlsx    # Raw dataset
│── Youtube_Video.ipynb    # Jupyter notebooks for analysis
│── README.md              # Project documentation
│── requirements.txt       # Dependencies

🔧 Installation & Usage

  1. Clone the Repository

    git clone https://github.com/tharikashree/Youtube-Data-Analysis.git
    cd Youtube-Data-Analysis
  2. Create a Virtual Environment (Optional but recommended)

    python -m venv venv
    source venv/bin/activate   # On macOS/Linux
    venv\Scripts\activate      # On Windows
  3. Install Dependencies

    pip install -r requirements.txt
  4. Run the Analysis

    • Open Jupyter Notebook and explore Youtube_Video.ipynb
    • Run Python scripts for analysis

📊 Sample Visualizations

  • Views vs. Duration scatter plots
  • Most popular categories
  • Trends in video engagement

🔗 References

💡 Future Enhancements

  • Automate data collection using APIs
  • Build a recommendation model
  • Deploy a web dashboard for real-time analysis

🤝 Contributing

Feel free to fork the repository and submit pull requests for improvements!

📜 License

This project is licensed under the MIT License.

About

Data analysis and visualization of the Youtube content of a specific search query

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published