Deep Agentsライブラリのアーキテクチャを活用した、ハーネス構成のRAGシステムです。複数のエージェントが協調動作し、質問の粒度に応じて最適なRAGシステム(Naive RAG / ColBERT RAG)を自動選択します。
-
Updated
Dec 14, 2025 - Python
Deep Agentsライブラリのアーキテクチャを活用した、ハーネス構成のRAGシステムです。複数のエージェントが協調動作し、質問の粒度に応じて最適なRAGシステム(Naive RAG / ColBERT RAG)を自動選択します。
Multimodal RAPTOR for Disaster Documents using ColVBERT & BLIP. Hierarchical retrieval system over 46 tsunami-related PDFs (2378 pages), combining BLIP-based image captioning, ColVBERT embeddings, and GPT-OSS-20b long-context summarization. Optimized for fast multimodal tree construction and disaster knowledge preservation.
An advanced RAG (Retrieval-Augmented Generation) system using RAPTOR algorithm to hierarchically organize and retrieve lessons from the 2011 Great East Japan Earthquake and Tsunami for educational purposes.
Add a description, image, and links to the disaster-knowledge-base topic page so that developers can more easily learn about it.
To associate your repository with the disaster-knowledge-base topic, visit your repo's landing page and select "manage topics."