Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
164 changes: 34 additions & 130 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,151 +1,55 @@
# LLMX - An API for Chat Fine-Tuned Language Models
# LLMX with Ollama extension
This repository is a fork of [llmx](https://github.com/victordibia/llmx) with added support for running Ollama models locally.
It extends llmx by integrating locally hosted Ollama models and their execution features.
You can install this fork directly from the GitHub repository using pip.

[![PyPI version](https://badge.fury.io/py/llmx.svg)](https://badge.fury.io/py/llmx)
Use this version if you want seamless integration of Ollama models within the llmx workflow.
Contributions and feedback are welcome to further improve Ollama compatibility.

A simple python package that provides a unified interface to several LLM providers of chat fine-tuned models [OpenAI, AzureOpenAI, PaLM, Cohere and local HuggingFace Models].

> **Note**
> llmx wraps multiple api providers and its interface _may_ change as the providers as well as the general field of LLMs evolve.

There is nothing particularly special about this library, but some of the requirements I needed when I started building this (that other libraries did not have):
## Prerequisite-Ollama local setup
Prerequisite: A working local Ollama setup must be installed and running on your machine before using this fork

- **Unified Model Interface**: Single interface to create LLM text generators with support for **multiple LLM providers**.
Go to the official Ollama website (https://ollama.com) and download the installer.
After installation , verify the installation by running the below command from command line.
<pre>
ollama -v
</pre>

```python
from llmx import llm

gen = llm(provider="openai") # support azureopenai models too.
gen = llm(provider="palm") # or google
gen = llm(provider="cohere") # or palm
gen = llm(provider="hf", model="HuggingFaceH4/zephyr-7b-beta", device_map="auto") # run huggingface model locally
```

- **Unified Messaging Interface**. Standardizes on the OpenAI ChatML message format and is designed for _chat finetuned_ models. For example, the standard prompt sent a model is formatted as an array of objects, where each object has a role (`system`, `user`, or `assistant`) and content (see below). A single request is list of only one message (e.g., write code to plot a cosine wave signal). A conversation is a list of messages e.g. write code for x, update the axis to y, etc. Same format for all models.

```python
messages = [
{"role": "user", "content": "You are a helpful assistant that can explain concepts clearly to a 6 year old child."},
{"role": "user", "content": "What is gravity?"}
]
```
To list available models:
<pre>
ollama list
</pre>

- **Good Utils (e.g., Caching etc)**: E.g. being able to use caching for faster responses. General policy is that cache is used if config (including messages) is the same. If you want to force a new response, set `use_cache=False` in the `generate` call.

```python
response = gen.generate(messages=messages, config=TextGeneratorConfig(n=1, use_cache=True))
```
To download and run a model i.e. llama3.2:3b
<pre>
ollama run llama3.2:3b
</pre>

Output looks like

```bash

TextGenerationResponse(
text=[Message(role='assistant', content="Gravity is like a magical force that pulls things towards each other. It's what keeps us on the ground and stops us from floating away into space. ... ")],
config=TextGenerationConfig(n=1, temperature=0.1, max_tokens=8147, top_p=1.0, top_k=50, frequency_penalty=0.0, presence_penalty=0.0, provider='openai', model='gpt-4', stop=None),
logprobs=[], usage={'prompt_tokens': 34, 'completion_tokens': 69, 'total_tokens': 103})

```

Are there other libraries that do things like this really well? Yes! I'd recommend looking at [guidance](https://github.com/microsoft/guidance) which does a lot more. Interested in optimized inference? Try somthing like [vllm](https://github.com/vllm-project/vllm).

## Installation

Install from pypi. Please use **python3.10** or higher.

```bash
pip install llmx
```

Install in development mode

```bash
git clone
cd llmx
pip install -e .
```

Note that you may want to use the latest version of pip to install this package.
`python3 -m pip install --upgrade pip`
## Testing llmx-ollama extension
<pre>
python .\tests\test_generators.py
</pre>

## Usage

Set your api keys first for each service.

```bash
# for openai and cohere
export OPENAI_API_KEY=<your key>
export COHERE_API_KEY=<your key>

# for PALM via MakerSuite
export PALM_API_KEY=<your key>

# for PaLM (Vertex AI), setup a gcp project, and get a service account key file
export PALM_SERVICE_ACCOUNT_KEY_FILE= <path to your service account key file>
export PALM_PROJECT_ID=<your gcp project id>
export PALM_PROJECT_LOCATION=<your project location>
```

You can also set the default provider and list of supported providers via a config file. Use the yaml format in this [sample `config.default.yml` file](llmx/configs/config.default.yml) and set the `LLMX_CONFIG_PATH` to the path of the config file.

```python
from llmx import llm
from llmx.datamodel import TextGenerationConfig

# Define your messages and config as needed
messages = [
{"role": "system", "content": "You are a helpful assistant that can explain concepts clearly to a 6 year old child."},
{"role": "user", "content": "What is gravity?"}
{"role": "user", "content": "What is the capital city of Germany?"}
]

openai_gen = llm(provider="openai")
openai_config = TextGenerationConfig(model="gpt-4", max_tokens=50)
openai_response = openai_gen.generate(messages, config=openai_config, use_cache=True)
print(openai_response.text[0].content)

```

See the [tutorial](/notebooks/tutorial.ipynb) for more examples.

## A Note on Using Local HuggingFace Models

While llmx can use the huggingface transformers library to run inference with local models, you might get more mileage from using a well-optimized server endpoint like [vllm](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html#openai-compatible-server), or FastChat. The general idea is that these tools let you provide an openai-compatible endpoint but also implement optimizations such as dynamic batching, quantization etc to improve throughput. The general steps are:

- install vllm, setup endpoint e.g., on port `8000`
- use openai as your provider to access that endpoint.

```python
from llmx import llm
hfgen_gen = llm(
provider="openai",
api_base="http://localhost:8000",
api_key="EMPTY,
config = TextGenerationConfig(
temperature=0.4,
use_cache=False
)
...
```

## Current Work

- Supported models
- [x] OpenAI
- [x] PaLM ([MakerSuite](https://developers.generativeai.google/api/rest/generativelanguage), [Vertex AI](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/models))
- [x] Cohere
- [x] HuggingFace (local)

## Caveats

- **Prompting**. llmx makes some assumptions around how prompts are constructed e.g., how the chat message interface is assembled into a prompt for each model type. If your application or use case requires more control over the prompt, you may want to use a different library (ideally query the LLM models directly).
- **Inference Optimization**. For hosted models (GPT-4, PalM, Cohere) etc, this library provides an excellent unified interface as the hosted api already takes care of inference optimizations. However, if you are looking for a library that is optimized for inference with **_local models_(e.g., huggingface)** (tensor parrelization, distributed inference etc), I'd recommend looking at [vllm](https://github.com/vllm-project/vllm) or [tgi](https://github.com/huggingface/text-generation-inference).

## Citation
ollama_gen = llm(provider="ollama", model="llama3.2:3b")
response = ollama_gen.generate(messages, config=config)
answer = response.text[0].content

If you use this library in your work, please cite:
print("Summary:", answer)

```bibtex
@software{victordibiallmx,
author = {Victor Dibia},
license = {MIT},
month = {10},
title = {LLMX - An API for Chat Fine-Tuned Language Models},
url = {https://github.com/victordibia/llmx},
year = {2023}
}
```
84 changes: 84 additions & 0 deletions llmx/generators/text/ollama_textgen.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
from typing import Union, List, Dict
from .base_textgen import TextGenerator
from ...datamodel import Message, TextGenerationConfig, TextGenerationResponse
from ...utils import cache_request, get_models_maxtoken_dict, num_tokens_from_messages
import os
import ollama
import warnings, requests, logging
from dataclasses import asdict


class OllamaTextGenerator(TextGenerator):
def __init__(
self,
provider: str = "ollama",
host: str = "http://localhost:11434",
model: str = None,
model_name: str = None,
models: Dict = None,
):
super().__init__(provider=provider)
self.host = host

if not self.is_ollama_running():
raise RuntimeError(
"Ollama is not running. Please start ('ollama serve') and ensure port is reachable."
)

self.model_name = model_name or "llama3.1:8b"
self.model_max_token_dict = get_models_maxtoken_dict(models)

for key,value in self.model_max_token_dict.items():
print(f"{key : }{value}")


def generate(
self,
messages: Union[List[dict], str],
config: TextGenerationConfig = TextGenerationConfig(),
**kwargs,
) -> TextGenerationResponse:
use_cache = config.use_cache
model = config.model or self.model_name

#Hack to keep descriptions filled
messages[0]["content"] += "Always fill the description fields."
ollama_config = {
"model": self.model_name,
"prompt": messages,
"temperature": config.temperature,
"k": config.top_k,
"p": config.top_p,
"num_generations": config.n,
}
cache_key_params = ollama_config | {"messages": messages}

if use_cache:
response = cache_request(cache=self.cache, params=cache_key_params)
if response:
logging.warning("****** Using Cache ******")
return TextGenerationResponse(**response)


response = ollama.chat(model=model, messages=messages)
response_gen = TextGenerationResponse(
text=[dict(response.message)],
config=ollama_config
)
cache_request(
cache=self.cache, params=cache_key_params, values=asdict(response_gen)
)
return response_gen

def is_ollama_running(self) -> bool:
try:
r = requests.get(self.host, timeout=2)
return True
except requests.exceptions.ConnectionError:
return False
except requests.exceptions.Timeout:
return False

def count_tokens(self, text) -> int:
numtk = num_tokens_from_messages(text)
return num_tokens_from_messages(text)
13 changes: 12 additions & 1 deletion llmx/generators/text/textgen.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
from .palm_textgen import PalmTextGenerator
from .cohere_textgen import CohereTextGenerator
from .anthropic_textgen import AnthropicTextGenerator
from .ollama_textgen import OllamaTextGenerator
import logging

logger = logging.getLogger("llmx")
Expand All @@ -19,9 +20,11 @@ def sanitize_provider(provider: str):
return "hf"
elif provider.lower() == "anthropic" or provider.lower() == "claude":
return "anthropic"
elif provider.lower() == "ollama" or provider.lower() == "ollama":
return "ollama"
else:
raise ValueError(
f"Invalid provider '{provider}'. Supported providers are 'openai', 'hf', 'palm', 'cohere', and 'anthropic'."
f"Invalid provider '{provider}'. Supported providers are 'openai', 'hf', 'palm', 'cohere', and 'anthropic'.'ollama',"
)


Expand Down Expand Up @@ -58,6 +61,14 @@ def llm(provider: str = None, **kwargs):
return CohereTextGenerator(**kwargs)
elif provider.lower() == "anthropic":
return AnthropicTextGenerator(**kwargs)
elif provider.lower() == "ollama":
try:
import ollama
except ImportError:
raise ImportError(
"Please install the `ollama` package to use the HFTextGenerator class. pip install ollama"
)
return OllamaTextGenerator(**kwargs)
elif provider.lower() == "hf":
try:
import transformers
Expand Down
14 changes: 14 additions & 0 deletions tests/test_generators.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,3 +74,17 @@ def test_hf_local():

assert ("paris" in answer.lower())
assert len(hf_local_response.text) == 2


def test_ollama_local():
ollama_local_gen = llm(
provider="ollama",
model="llama3.2:3b",
model_name ="llama3.2:3b"
)
ollama_local_response = ollama_local_gen.generate(messages, config=config)
answer = ollama_local_response.text[0].content
print(ollama_local_response.text[0].content)

if __name__ == "__main__":
test_ollama_local()