Skip to content

AI-powered proposal automation agent. Seamlessly integrates job scraping, requirement analysis, and personalized proposal drafting into a high-speed workflow.

Notifications You must be signed in to change notification settings

williamjxj/agentic-proposal-engine

Repository files navigation

Auto-Bidder Platform 🤖

An AI-powered auto-bidding platform that reduces proposal writing time from 30 minutes to 2 minutes using RAG-based knowledge retrieval and AI proposal generation.

🎯 Core Features

  • Automated Job Discovery: Scrape and collect relevant freelance jobs from multiple platforms
  • Smart Knowledge Base: Upload portfolio documents, case studies, and team profiles for AI context
  • AI Proposal Generation: Generate personalized, evidence-based proposals in under 60 seconds
  • Bidding Strategies: Create reusable AI prompt templates for different proposal styles
  • Keyword Management: Filter jobs based on your expertise and preferences
  • Analytics Dashboard: Track win rates, platform performance, and time savings

🏗️ Architecture

This is a full-stack monorepo with two main components:

Frontend (Next.js 15)

  • Framework: Next.js 15 with App Router
  • UI: React 19 + shadcn/ui + TailwindCSS 4
  • State: TanStack Query for server state
  • Auth: Supabase Auth
  • Database: PostgreSQL via Supabase

Backend (Python FastAPI)

  • Framework: FastAPI 0.104+
  • Vector DB: ChromaDB for RAG
  • RAG: LangChain for document processing
  • LLM: OpenAI GPT-4-turbo
  • Scraping: Crawlee for job discovery

🚀 Quick Start

Prerequisites

  • Node.js 20+
  • Python 3.11+
  • Supabase CLI
  • Docker (optional)

Setup (5 minutes)

# Clone the repository
git clone <repo-url> auto-bidder
cd auto-bidder

# Setup frontend
cd frontend
npm install
cp .env.example .env.local
# Edit .env.local with your Supabase credentials
npm run dev  # Runs on :3000

# Setup backend (new terminal)
cd backend
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
pip install -r requirements.txt
cp .env.example .env
# Edit .env with your OpenAI API key
uvicorn app.main:app --reload --port 8000

# Setup database (new terminal)
supabase start  # Starts local Supabase
supabase db reset  # Applies migrations

Environment Variables

Frontend (.env.local):

  • NEXT_PUBLIC_SUPABASE_URL: Your Supabase project URL
  • NEXT_PUBLIC_SUPABASE_ANON_KEY: Supabase anon key
  • PYTHON_AI_SERVICE_URL: Python service URL (default: http://localhost:8000)

Backend (.env):

  • OPENAI_API_KEY: Your OpenAI API key
  • SUPABASE_URL: Supabase project URL
  • SUPABASE_SERVICE_KEY: Supabase service role key
  • CHROMA_PERSIST_DIR: ChromaDB storage path (default: ./chroma_db)

📚 Documentation

Comprehensive documentation is available in the docs/ directory:

🗂️ Project Structure

auto-bidder/
├── frontend/              # Next.js 15 application
│   ├── src/
│   │   ├── app/           # Next.js App Router
│   │   ├── components/    # React components
│   │   ├── lib/           # Utilities
│   │   └── hooks/         # Custom hooks
│   └── package.json
├── backend/               # Python AI service
│   ├── app/
│   │   ├── main.py        # FastAPI entry
│   │   ├── routers/       # API routes
│   │   ├── services/      # Business logic
│   │   └── models/        # Pydantic schemas
│   └── requirements.txt
├── database/              # Database migrations
│   ├── migrations/
│   └── seed/
├── shared/                # Shared types
│   └── types/
├── scripts/               # Automation scripts
│   ├── setup/
│   └── deploy/
└── docs/                  # Documentation

🧪 Testing

# Frontend tests
cd frontend
npm test

# Backend tests
cd backend
pytest

# E2E tests
npm run test:e2e

🚢 Deployment

Frontend (Vercel)

cd frontend
vercel deploy

Backend (Railway)

cd backend
railway up

See docs/DEPLOYMENT.md for detailed deployment instructions.

📊 Success Metrics

  • Time Savings: 25+ minutes per proposal (target: 30 min → 2 min)
  • Proposal Quality: 95%+ accuracy in formatting and completeness
  • RAG Relevance: 80%+ of proposals cite relevant past projects
  • Win Rate: 20% increase in proposal acceptance (tracked)
  • User Activation: 70% of signups generate first proposal within 24h

🛠️ Tech Stack

Frontend:

  • Next.js 15.3.5
  • React 19
  • TypeScript 5.x
  • TailwindCSS 4
  • shadcn/ui
  • TanStack Query 5.x
  • Supabase JS Client

Backend:

  • Python 3.11+
  • FastAPI 0.104+
  • ChromaDB 0.4+
  • LangChain 0.1+
  • OpenAI GPT-4-turbo
  • Crawlee
  • pypdf, python-docx

Infrastructure:

  • PostgreSQL (Supabase)
  • ChromaDB (self-hosted)
  • Vercel (frontend)
  • Railway (backend)

🤝 Contributing

See CONTRIBUTING.md for development workflow and coding standards.

📄 License

MIT License

🔗 Links


Built with ❤️ by the Auto Bidder Team

About

AI-powered proposal automation agent. Seamlessly integrates job scraping, requirement analysis, and personalized proposal drafting into a high-speed workflow.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published