-
Notifications
You must be signed in to change notification settings - Fork 0
Feature/asymline #1
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -48,6 +48,7 @@ | |
| .. autoclass:: H2DLocalExpansion | ||
| .. autoclass:: Y2DLocalExpansion | ||
| .. autoclass:: LineTaylorLocalExpansion | ||
| .. autoclass:: AsymptoticDividingLineTaylorExpansion | ||
|
|
||
| """ | ||
|
|
||
|
|
@@ -106,6 +107,10 @@ def translate_from(self, src_expansion, src_coeff_exprs, src_rscale, | |
| # {{{ line taylor | ||
|
|
||
| class LineTaylorLocalExpansion(LocalExpansionBase): | ||
| def __init__(self, kernel, order, tau=1, use_rscale=None, m2l_translation=None): | ||
| super().__init__(kernel, order, use_rscale, m2l_translation) | ||
| self.tau = tau | ||
|
|
||
| def get_storage_index(self, k): | ||
| return k | ||
|
|
||
|
|
@@ -152,8 +157,9 @@ def evaluate(self, tgt_kernel, coeffs, bvec, rscale, sac=None): | |
|
|
||
| # NOTE: We can't meaningfully apply target derivatives here. | ||
| # Instead, this is handled in LayerPotentialBase._evaluate. | ||
|
|
||
| return sym.Add(*( | ||
| coeffs[self.get_storage_index(i)] / math.factorial(i) | ||
| coeffs[self.get_storage_index(i)] / math.factorial(i) * self.tau**i | ||
| for i in self.get_coefficient_identifiers())) | ||
|
|
||
| def translate_from(self, src_expansion, src_coeff_exprs, src_rscale, | ||
|
|
@@ -163,6 +169,113 @@ def translate_from(self, src_expansion, src_coeff_exprs, src_rscale, | |
| # }}} | ||
|
|
||
|
|
||
| # {{{ Asymptotic dividing line Taylor expansion | ||
|
|
||
| class AsymptoticDividingLineTaylorExpansion(LocalExpansionBase): | ||
| r""" | ||
| A target-specific modified line Taylor expansion. | ||
|
|
||
| The expansion line is defined as :math:`l(\tau) = \text{avec} + \tau \cdot | ||
| \text{bvec}` at a target point :math:`x`. The modified line Taylor expansion takes | ||
| the form: | ||
|
|
||
| .. math:: | ||
|
|
||
| \sum_{k=0}^{\text{order}} \frac{g_k}{k!} \tau^k, | ||
|
|
||
| where: | ||
|
|
||
| .. math:: | ||
|
|
||
| g_k := \frac{d^k}{d\tau^k} \left( | ||
| \frac{\text{kernel}(l(\tau))}{\text{asymptotic}(l(\tau))} \right) \bigg|_{\tau=0} | ||
|
|
||
| .. automethod:: get_asymptotic_expression | ||
| """ | ||
|
|
||
| def __init__(self, | ||
| kernel, | ||
| asymptotic, | ||
| order, | ||
| tau=1, | ||
| use_rscale=None, | ||
| m2l_translation=None): | ||
| super().__init__(kernel, order, use_rscale, m2l_translation) | ||
| self.asymptotic = asymptotic | ||
| self.tau = tau | ||
|
Comment on lines
+196
to
+205
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. [P1] Distinguish asymptotic line expansions by asymptotic/tau The new Useful? React with 👍 / 👎. |
||
|
|
||
| def get_storage_index(self, k): | ||
| return k | ||
|
|
||
| def get_coefficient_identifiers(self): | ||
| return list(range(self.order+1)) | ||
|
|
||
| def get_asymptotic_expression(self, scaled_dist_vec): | ||
| from sumpy.symbolic import PymbolicToSympyMapperWithSymbols, Symbol | ||
|
|
||
| expr = PymbolicToSympyMapperWithSymbols()(self.asymptotic) | ||
| expr = expr.xreplace({Symbol(f"d{i}"): dist_vec_i | ||
| for i, dist_vec_i in enumerate(scaled_dist_vec)}) | ||
|
|
||
| tau = sym.Symbol("tau") | ||
|
|
||
| b = scaled_dist_vec.applyfunc(lambda expr: expr.coeff(tau)) | ||
| a = scaled_dist_vec - tau*b | ||
| expr = expr.subs({Symbol(f"a{i}"): a_i for i, a_i in enumerate(a)}) | ||
| expr = expr.subs({Symbol(f"b{i}"): b_i for i, b_i in enumerate(b)}) | ||
|
|
||
| return expr | ||
|
|
||
| def coefficients_from_source(self, kernel, avec, bvec, rscale, sac=None): | ||
| # no point in heeding rscale here--just ignore it | ||
| if bvec is None: | ||
| raise RuntimeError("cannot use line-Taylor expansions in a setting " | ||
| "where the center-target vector is not known at coefficient " | ||
| "formation") | ||
|
|
||
| tau = sym.Symbol("tau") | ||
|
|
||
| avec_line = avec + tau*bvec | ||
| line_kernel = ( | ||
| kernel.get_expression(avec_line) | ||
| / self.get_asymptotic_expression(avec_line)) | ||
|
|
||
| from sumpy.symbolic import USE_SYMENGINE | ||
| if USE_SYMENGINE: | ||
|
|
||
| from sumpy.derivative_taker import ExprDerivativeTaker | ||
| deriv_taker = ExprDerivativeTaker(line_kernel, (tau,), sac=sac, rscale=1) | ||
|
|
||
| return [kernel.postprocess_at_source( | ||
| deriv_taker.diff(i), avec).subs(tau, 0) | ||
| for i in self.get_coefficient_identifiers()] | ||
| else: | ||
| # Workaround for sympy. The automatic distribution after | ||
| # single-variable diff makes the expressions very large | ||
| # (https://github.com/sympy/sympy/issues/4596), so avoid doing | ||
| # single variable diff. | ||
| # | ||
| # See also https://gitlab.tiker.net/inducer/pytential/merge_requests/12 | ||
|
|
||
| return [kernel.postprocess_at_source( | ||
| line_kernel.diff(tau, i), avec) | ||
| .subs(tau, 0) | ||
| for i in self.get_coefficient_identifiers()] | ||
|
|
||
| def evaluate(self, tgt_kernel, coeffs, bvec, rscale, sac=None): | ||
| # no point in heeding rscale here--just ignore it | ||
|
|
||
| return sym.Add(*( | ||
| coeffs[self.get_storage_index(i)] / math.factorial(i) * self.tau**i | ||
| for i in self.get_coefficient_identifiers())) | ||
|
|
||
| def translate_from(self, src_expansion, src_coeff_exprs, src_rscale, | ||
| dvec, tgt_rscale, sac=None, m2l_translation_classes_dependent_data=None): | ||
| raise NotImplementedError | ||
|
|
||
| # }}} | ||
|
|
||
|
|
||
| # {{{ volume taylor | ||
|
|
||
| class VolumeTaylorLocalExpansionBase(VolumeTaylorExpansionMixin, LocalExpansionBase): | ||
|
|
||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,227 @@ | ||
| from __future__ import annotations | ||
|
|
||
|
|
||
| __copyright__ = """ | ||
| Copyright (C) 2025 Shawn Lin | ||
| Copyright (C) 2025 University of Illinois Board of Trustees | ||
| """ | ||
|
|
||
| __license__ = """ | ||
| Permission is hereby granted, free of charge, to any person obtaining a copy | ||
| of this software and associated documentation files (the "Software"), to deal | ||
| in the Software without restriction, including without limitation the rights | ||
| to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
| copies of the Software, and to permit persons to whom the Software is | ||
| furnished to do so, subject to the following conditions: | ||
|
|
||
| The above copyright notice and this permission notice shall be included in | ||
| all copies or substantial portions of the Software. | ||
|
|
||
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
| AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
| LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
| OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | ||
| THE SOFTWARE. | ||
| """ | ||
|
|
||
|
|
||
| import sys | ||
|
|
||
| import meshmode.mesh.generation as mgen | ||
| import mpmath | ||
| import numpy as np | ||
| import pytest | ||
| from meshmode.discretization import Discretization | ||
| from meshmode.discretization.poly_element import ( | ||
| InterpolatoryQuadratureSimplexGroupFactory, | ||
| ) | ||
| from pytential import GeometryCollection, bind, sym | ||
| from pytential.qbx import QBXLayerPotentialSource | ||
|
|
||
| from arraycontext import ( | ||
| ArrayContextFactory, | ||
| PyOpenCLArrayContext, | ||
| flatten, | ||
| pytest_generate_tests_for_array_contexts, | ||
| ) | ||
| from pytools.convergence import EOCRecorder | ||
|
|
||
| from sumpy.array_context import ( # noqa: F401 | ||
| PytestPyOpenCLArrayContextFactory, | ||
| _acf, # pyright: ignore[reportUnusedImport] | ||
| ) | ||
| from sumpy.expansion.local import AsymptoticDividingLineTaylorExpansion | ||
| from sumpy.kernel import YukawaKernel | ||
| from sumpy.qbx import LayerPotentialMatrixGenerator | ||
|
|
||
|
|
||
| pytest_generate_tests = pytest_generate_tests_for_array_contexts([ | ||
| PytestPyOpenCLArrayContextFactory, | ||
| ]) | ||
|
|
||
|
|
||
| def asym_yukawa(dim, lam=None): | ||
| """Asymptotic function of the Yukawa kernel.""" | ||
| from pymbolic import primitives, var | ||
|
|
||
| from sumpy.symbolic import SpatialConstant, pymbolic_real_norm_2 | ||
|
|
||
| b = pymbolic_real_norm_2(primitives.make_sym_vector("b", dim)) | ||
|
|
||
| if lam: | ||
| expr = var("exp")(-lam * b * (1 - var("tau"))) | ||
| else: | ||
| lam = SpatialConstant("lam") | ||
| expr = var("exp")(-lam * b * (1 - var("tau"))) | ||
| return expr | ||
|
|
||
|
|
||
| def utrue(lam, r, tau, targets_h, f_mode, side): | ||
| """Test convergence of QBMAX (asymptotic Yukawa expansion) on a unit circle | ||
| with density φ(y) = exp(imθ_y)""" | ||
| mpmath.mp.dps = 25 | ||
|
|
||
| angles = np.arctan2(targets_h[1, :], targets_h[0, :]) | ||
| n_points = len(angles) | ||
| result = np.zeros(n_points, dtype=np.complex128) | ||
|
|
||
| for i in range(n_points): | ||
| r_i = float(r[i]) | ||
|
|
||
| if side == -1: | ||
| coeff = float(mpmath.besselk(f_mode, lam) * | ||
| mpmath.besseli(f_mode, lam * (1 - (1 - tau) * r_i))) | ||
| else: | ||
| coeff = float(mpmath.besseli(f_mode, lam) * | ||
| mpmath.besselk(f_mode, lam * (1 + (1 - tau) * r_i))) | ||
|
|
||
| result[i] = coeff * np.exp(1j * f_mode * angles[i]) | ||
|
|
||
| return result | ||
|
|
||
|
|
||
| def test_qbmax_yukawa_convergence( | ||
| actx_factory: ArrayContextFactory, | ||
| ): | ||
| """Test convergence of QBMAX (asymptotic Yukawa expansion) for various τ values.""" | ||
| actx = actx_factory() | ||
| if not isinstance(actx, PyOpenCLArrayContext): | ||
| pytest.skip() | ||
|
|
||
| lam = 15 | ||
| f_mode = 7 | ||
| nelements = [20, 40, 60] | ||
| qbx_order = 4 | ||
| target_order = 5 | ||
| upsampling_factor = 5 | ||
| extra_kwargs = {"lam": lam} | ||
|
|
||
| knl = YukawaKernel(2) | ||
| asym_knl = asym_yukawa(2) | ||
|
|
||
| rng = np.random.default_rng(seed=42) | ||
| t = rng.uniform(0, 1, 10) | ||
| targets_h = np.array([np.cos(2 * np.pi * t), np.sin(2 * np.pi * t)]) | ||
| targets = actx.from_numpy(targets_h) | ||
|
|
||
| for tau in [0, 0.5, 1]: | ||
| eoc_in = EOCRecorder() | ||
| eoc_out = EOCRecorder() | ||
|
|
||
| asym_expn = AsymptoticDividingLineTaylorExpansion( | ||
| knl, asym_knl, qbx_order, tau=tau) | ||
|
|
||
| for nelement in nelements: | ||
| mesh = mgen.make_curve_mesh( | ||
| mgen.circle, np.linspace(0, 1, nelement+1), target_order) | ||
| pre_density_discr = Discretization( | ||
| actx, mesh, | ||
| InterpolatoryQuadratureSimplexGroupFactory(target_order)) | ||
|
|
||
| qbx = QBXLayerPotentialSource( | ||
| pre_density_discr, | ||
| upsampling_factor * target_order, | ||
| qbx_order, | ||
| fmm_order=False) | ||
|
|
||
| places = GeometryCollection({"qbx": qbx}, auto_where=("qbx")) | ||
|
|
||
| source_discr = places.get_discretization( | ||
| "qbx", sym.QBX_SOURCE_QUAD_STAGE2) | ||
| sources = source_discr.nodes() | ||
| sources_h = actx.to_numpy(flatten(sources, actx)).reshape(2, -1) | ||
|
|
||
| dofdesc = sym.DOFDescriptor("qbx", sym.QBX_SOURCE_QUAD_STAGE2) | ||
| weights_nodes = bind( | ||
| places, | ||
| sym.weights_and_area_elements( | ||
| ambient_dim=2, dim=1, dofdesc=dofdesc))(actx) | ||
| weights_nodes_h = actx.to_numpy(flatten(weights_nodes, actx)) | ||
|
|
||
| angle = np.arctan2(sources_h[1, :], sources_h[0, :]) | ||
| sigma = np.exp(1j * f_mode * angle) * weights_nodes_h | ||
|
|
||
| expansion_radii_h = np.ones(targets_h.shape[1]) * np.pi / nelement | ||
| centers_in = actx.from_numpy((1 - expansion_radii_h) * targets_h) | ||
| centers_out = actx.from_numpy((1 + expansion_radii_h) * targets_h) | ||
|
|
||
| mat_asym_gen = LayerPotentialMatrixGenerator( | ||
| actx.context, | ||
| expansion=asym_expn, | ||
| source_kernels=(knl,), | ||
| target_kernels=(knl,)) | ||
|
|
||
| _, (mat_asym_in,) = mat_asym_gen( | ||
| actx.queue, | ||
| targets=targets, | ||
| sources=actx.from_numpy(sources_h), | ||
| expansion_radii=expansion_radii_h, | ||
| centers=centers_in, | ||
| **extra_kwargs) | ||
|
|
||
| mat_asym_in = actx.to_numpy(mat_asym_in) | ||
| weighted_mat_asym_in = mat_asym_in * sigma[None, :] | ||
| asym_eval_in = (np.sum(weighted_mat_asym_in, axis=1) * | ||
| np.exp(-lam * expansion_radii_h * (1 - tau))) | ||
|
|
||
| _, (mat_asym_out,) = mat_asym_gen( | ||
| actx.queue, | ||
| targets=targets, | ||
| sources=actx.from_numpy(sources_h), | ||
| expansion_radii=expansion_radii_h, | ||
| centers=centers_out, | ||
| **extra_kwargs) | ||
|
|
||
| mat_asym_out = actx.to_numpy(mat_asym_out) | ||
| weighted_mat_asym_out = mat_asym_out * sigma[None, :] | ||
| asym_eval_out = (np.sum(weighted_mat_asym_out, axis=1) * | ||
| np.exp(-lam * expansion_radii_h * (1 - tau))) | ||
|
|
||
| utrue_in = utrue(lam, expansion_radii_h, tau, targets_h, f_mode, -1) | ||
| utrue_out = utrue(lam, expansion_radii_h, tau, targets_h, f_mode, 1) | ||
|
|
||
| err_in = (np.max(np.abs(asym_eval_in - utrue_in)) / | ||
| np.max(np.abs(utrue_in))) | ||
| err_out = (np.max(np.abs(asym_eval_out - utrue_out)) / | ||
| np.max(np.abs(utrue_out))) | ||
|
|
||
| h_max = actx.to_numpy( | ||
| bind(places, sym.h_max(places.ambient_dim))(actx)) | ||
|
|
||
| eoc_in.add_data_point(h_max, err_in) | ||
| eoc_out.add_data_point(h_max, err_out) | ||
|
|
||
| assert eoc_in.order_estimate() > qbx_order, \ | ||
| f"Interior convergence too slow: {eoc_in.order_estimate()}" | ||
|
|
||
| assert eoc_out.order_estimate() > qbx_order, \ | ||
| f"Exterior convergence too slow: {eoc_out.order_estimate()}" | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| if len(sys.argv) > 1: | ||
| exec(sys.argv[1]) | ||
| else: | ||
| pytest.main([__file__]) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
[P1] Include τ in LineTaylor expansion identity
The constructor now stores a
tauparameter, butLineTaylorLocalExpansionstill relies onLocalExpansionBase’s defaultinit_arg_names,__eq__, and persistent-hash implementation, which only look at the kernel, order, anduse_rscale. As a result, two expansions constructed with different τ values compare equal and generate identical cache keys, so enabling kernel caching (or callingcopy()/with_kernel()) will reuse code compiled with the wrong τ and silently produce incorrect matrices. Please add τ to the expansion’s init args and hashing/equality so that different τ values generate distinct kernels and survivecopy().Useful? React with 👍 / 👎.