Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@ export(calculate_shrinkage)
export(calculate_stats)
export(compare_psn_execute_results)
export(compare_psn_proseval_results)
export(fit_options)
export(group_by_dose)
export(group_by_time)
export(install_default_literature_model)
Expand Down
10 changes: 10 additions & 0 deletions R/calculate_stats.R
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,16 @@ calculate_stats <- function(
if(inherits(.res, "mipdeval_results")) {
.res <- .res$results
}
## Check for errors during fits / predictions
errors <- dplyr::filter(
.res,
is.na(.data$pred) |
(is.na(.data$map_ipred) & !.data$apriori) |
is.na(.data$iter_ipred)
)
if(nrow(errors) > 0) {
cli::cli_warn("Errors were encountered in {nrow(errors)} out of {nrow(.res)} evaluated predictions. The problems occurred in patient(s) {unique(errors$id)}.")
}
out <- .res |>
tidyr::pivot_longer(
cols = c("pred", "map_ipred", "iter_ipred"), names_to = "type"
Expand Down
27 changes: 27 additions & 0 deletions R/run_eval.R
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,8 @@
#' result from a call to [stats_summ_options()].
#' @param .vpc_options Options for VPC simulations. This must be the result from
#' a call to [vpc_options()].
#' @param .fit_options Options for controlling MAP Bayesian fit. This must be
#' the result from a call to [fit_options()].
#' @param threads number of threads to divide computations on. Default is 1,
#' i.e. no parallel execution
#' @param ruv residual error variability magnitude, specified as list.
Expand Down Expand Up @@ -63,6 +65,7 @@ run_eval <- function(
incremental = FALSE,
.stats_summ_options = stats_summ_options(),
.vpc_options = vpc_options(),
.fit_options = fit_options(),
threads = 1,
progress = TRUE,
verbose = TRUE
Expand Down Expand Up @@ -127,6 +130,7 @@ run_eval <- function(
weight_prior = weight_prior,
incremental = incremental,
progress_function = p,
.fit_options = .fit_options,
.threads = threads,
.skip = .vpc_options$vpc_only
)
Expand Down Expand Up @@ -189,3 +193,26 @@ run_eval <- function(
## 5. Return results
out
}

#' Options for controlling MAP Bayesian fit
#'
#' @param ... These dots are reserved for future extensibility and must be empty.
#' @param reltol Relative convergence tolerance. `reltol = 1e-04` will perform a
#' slightly coarser but more stable fit, which can be useful in some case.
#'
#' @returns A list.
#' @export
fit_options <- function(
...,
reltol = 1e-05
) {
rlang::check_dots_empty()
out <- list(
control = list(
reltol = vctrs::vec_assert(
reltol, ptype = numeric(), size = 1L, arg = "reltol"
)
)
)
structure(out, class = "mipdeval_fit_options")
}
76 changes: 59 additions & 17 deletions R/run_eval_core.R
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,8 @@ run_eval_core <- function(
weight_prior = 1,
censor_covariates = TRUE,
incremental = FALSE,
progress_function = function() {}
progress_function = function() {},
.fit_options = NULL
) {

progress_function()
Expand Down Expand Up @@ -52,20 +53,26 @@ run_eval_core <- function(
mod_upd$parameters <- fit$parameters # take params from previous fit
mod_upd$omega <- fit$vcov
}
fit <- PKPDmap::get_map_estimates(
model = mod_obj$model,
parameters = mod_upd$parameters,
omega = mod_upd$omega,
error = mod_obj$ruv,
fixed = mod_obj$fixed,
as_eta = mod_obj$kappa,
data = data$observations,
covariates = cov_data,
regimen = data$regimen,
weight_prior = weight_prior,
weights = weights,
iov_bins = mod_obj$bins,
verbose = FALSE
fit <- do.call(
PKPDmap::get_map_estimates,
c(
list(
model = mod_obj$model,
parameters = mod_upd$parameters,
omega = mod_upd$omega,
error = mod_obj$ruv,
fixed = mod_obj$fixed,
as_eta = mod_obj$kappa,
data = data$observations,
covariates = cov_data,
regimen = data$regimen,
weight_prior = weight_prior,
weights = weights,
iov_bins = mod_obj$bins,
verbose = FALSE
),
.fit_options
)
)

## Data frame with predictive data
Expand All @@ -85,9 +92,44 @@ run_eval_core <- function(
`_iteration` = iterations[i],
`_grouper` = obs_data$`_grouper`
)
if(inherits(fit, "error")) {
## create NA records for this fit
pred_data <- tibble::tibble(
id = obs_data$id,
t = obs_data$t,
dv = NA,
ipred = NA,
pred = NA,
ofv = NA,
ss_w = NA,
`_iteration` = iterations[i],
`_grouper` = obs_data$`_grouper`
)
par_dummy <- as.data.frame(mod_upd$parameters)
par_dummy[, 1:ncol(par_dummy)] <- NA
fit_pars <- dplyr::mutate(as.data.frame(par_dummy), id = obs_data$id[1])
} else {
## Data frame with predictive data
pred_data <- tibble::tibble(
id = obs_data$id,
t = obs_data$t,
dv = fit$dv,
ipred = fit$ipred,
ires = fit$ires,
iwres = fit$iwres,
pred = fit$pred,
res = fit$res,
wres = fit$wres,
cwres = fit$cwres,
ofv = fit$fit$value,
ss_w = ss(fit$dv, fit$ipred, weights),
`_iteration` = iterations[i],
`_grouper` = obs_data$`_grouper`
)
## Add parameter estimates
fit_pars <- dplyr::mutate(as.data.frame(fit$parameters), id = obs_data$id[1])
}

## Add parameter estimates
fit_pars <- dplyr::mutate(as.data.frame(fit$parameters), id = obs_data$id[1])
comb <- dplyr::bind_rows(
comb, dplyr::left_join(pred_data, fit_pars, by = "id")
)
Expand Down
20 changes: 20 additions & 0 deletions man/fit_options.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

4 changes: 4 additions & 0 deletions man/run_eval.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

6 changes: 5 additions & 1 deletion man/run_eval_core.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.