███████╗ ██████╗ ██████╗ ██████╗ ███████╗ ██╔════╝██╔═══██╗██╔══██╗██╔════╝ ██╔════╝ █████╗ ██║ ██║██████╔╝██║ ███╗█████╗ ██╔══╝ ██║ ██║██╔══██╗██║ ██║██╔══╝ ██║ ╚██████╔╝██║ ██║╚██████╔╝███████╗ ╚═╝ ╚═════╝ ╚═╝ ╚═╝ ╚═════╝ ╚══════╝Convert, inspect, visualize, and score robotics datasets across every major format.
RLDS ═══╗ ╔═══► LeRobotZarr ═══╬════⚙════╬═══► RoboDMHDF5 ═══╝ ╚═══► RLDS
Convert between robotics dataset formats with one command. Score demonstration quality with research-backed metrics.
| Format | Read | Write | Visualize | Notes |
|---|---|---|---|---|
| RLDS | ✓ | ✓ | ✓ | Open-X, TensorFlow Datasets |
| LeRobot v2/v3 | ✓ | ✓ | ✓ | HuggingFace, Parquet + MP4 |
| GR00T | ✓ | - | ✓ | NVIDIA Isaac, LeRobot v2 with embodiment metadata |
| RoboDM | ✓ | ✓ | ✓ | Berkeley's .vla format, up to 70x compression* |
| Zarr | ✓ | - | ✓ | Diffusion Policy, UMI |
| HDF5 | ✓ | - | ✓ | robomimic, ACT/ALOHA |
| Rosbag | ✓ | - | ✓ | ROS1 .bag, ROS2 MCAP |
*RoboDM requires manual installation from GitHub (see below)
See docs/model_formats.md for which models (Octo, OpenVLA, ACT, Diffusion Policy, etc.) use which format. See docs/format_reference.md for detailed format specifications.
Every robotics lab has their own data format: Open-X uses RLDS, HuggingFace uses LeRobot, Diffusion Policy uses Zarr, robomimic uses HDF5. Want to train Octo on your ALOHA data? Write a converter. Want to use LeRobot on Open-X datasets? Write another.
Forge uses a hub-and-spoke architecture — one intermediate representation, O(n) format support:
Any Reader → Episode/Frame → Any Writer
Add a reader, get all writers for free. Add a writer, get all readers for free. No N×M conversion logic. See docs/architecture.md for details.
git clone https://github.com/arpitg1304/forge.git
cd forge
pip install -e ".[all]"RoboDM requires manual installation from GitHub (PyPI version has a codec bug):
git clone https://github.com/BerkeleyAutomation/robodm.git
pip install -e robodm# See what's in a dataset
forge inspect /path/to/dataset
# Convert it
forge convert /path/to/rlds ./output --format lerobot-v3
forge convert hf://arpitg1304/stack_lego ./stack_lego_rlds --format rlds --workers 4 --visualize
forge convert hf://lerobot/pusht ./pusht_robodm --format robodmWorks with HuggingFace Hub too:
forge inspect hf://lerobot/pusht
forge convert hf://lerobot/pusht ./output --format lerobot-v3import forge
# Inspect
info = forge.inspect("/path/to/dataset")
print(info.format, info.num_episodes, info.cameras)
# Convert
forge.convert(
"/path/to/rlds",
"/path/to/output",
target_format="lerobot-v3"
)Automated episode-level quality scoring from proprioception data alone — no video processing needed.
forge quality ./my_dataset
forge quality hf://lerobot/aloha_sim_cube --export report.jsonScores each episode 0-10 based on 8 research-backed metrics:
- Smoothness (LDLJ) — jerk-based smoothness from motor control literature (Hogan & Sternad, 2009)
- Dead actions — zero/constant action detection (Kim et al. "OpenVLA", 2024)
- Gripper chatter — rapid open/close transitions (Sakr et al., 2024)
- Static detection — idle periods where the robot isn't moving (Liu et al. "SCIZOR", 2025)
- Timestamp regularity — dropped frames and frequency jitter
- Action saturation — time spent at hardware limits
- Action entropy — diversity vs repetitiveness (Belkhale et al. "DemInf", 2025)
- Path length — wandering/hesitation in joint space
See forge/quality/README.md for full metric details, paper references, and how to add new metrics.
See docs/cli.md for the full command reference including:
forge inspect- Dataset inspection and schema analysisforge convert- Format conversion with camera mappingforge visualize- Interactive dataset viewerforge quality- Episode-level quality scoring (details)forge stats- Compute dataset statisticsforge export-video- Extract camera videos as MP4forge hub- Search and download from HuggingFace
For complex conversions, use a YAML config:
forge inspect my_dataset/ --generate-config config.yaml
forge convert my_dataset/ output/ --config config.yamlSee docs/configuration.md for details.
Planned features (contributions welcome!):
- Dataset merging - Combine multiple datasets into one (
forge merge ds1/ ds2/ --output combined/) - Train/val/test splitting - Split datasets with stratification (
--split 80/10/10) - Streaming reads - Process HuggingFace datasets without full download
- Episode filtering - Filter by quality score, flags, or episode IDs (
forge filter --min-quality 6.0) - Depth/point cloud support - Preserve depth streams from RLDS/Open-X
- GR00T writer - Write to NVIDIA Isaac GR00T training format (read support complete)
- Distributed conversion - Scale to 100K+ episode datasets across nodes
- Conversion verification - Automated diff between source and converted data
make venv && source .venv/bin/activate
make install-dev
make testMIT