Skip to content
3 changes: 2 additions & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,9 @@
## New functionality

* Added `metrics/kbet_pg` and `metrics/kbet_pg_label` components (PR #52).
* Added `methods/stacas` new method (PR #58).
- Add non-supervised version of STACAS tool for integration of single-cell transcriptomics data. This functionality enables correction of batch effects while preserving biological variability without requiring prior cell type annotations.
* Added `method/drvi` component (PR #61).

* Added `ARI_batch` and `NMI_batch` to `metrics/clustering_overlap` (PR #68).

## Minor changes
Expand Down
37 changes: 37 additions & 0 deletions src/methods/stacas/config.vsh.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
__merge__: ../../api/comp_method.yaml
name: stacas
label: STACAS
summary: Accurate semi-supervised integration of single-cell transcriptomics data
description: |
STACAS is a method for scRNA-seq integration,
especially suited to accurately integrate datasets with large cell type imbalance
(e.g. in terms of proportions of distinct cell populations).
Prior cell type knowledge, given as cell type labels, can be provided to the algorithm to perform
semi-supervised integration, leading to increased preservation of biological variability
in the resulting integrated space.
STACAS is robust to incomplete cell type labels and can be applied to large-scale integration tasks.
references:
doi: 10.1038/s41467-024-45240-z
# Andreatta M, Hérault L, Gueguen P, Gfeller D, Berenstein AJ, Carmona SJ.
# Semi-supervised integration of single-cell transcriptomics data.
# Nature Communications*. 2024;15(1):1-13. doi:10.1038/s41467-024-45240-z
links:
documentation: https://carmonalab.github.io/STACAS.demo/STACAS.demo.html
repository: https://github.com/carmonalab/STACAS
info:
preferred_normalization: log_cp10k
method_types: [embedding]
resources:
- type: r_script
path: script.R
engines:
- type: docker
image: openproblems/base_r:1
setup:
- type: r
github: carmonalab/STACAS@2.3.0
runners:
- type: executable
- type: nextflow
directives:
label: [midtime,midmem,midcpu]
56 changes: 56 additions & 0 deletions src/methods/stacas/script.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
requireNamespace("anndata", quietly = TRUE)
suppressPackageStartupMessages({
library(STACAS)
library(Matrix)
library(SeuratObject)
library(Seurat)
})

## VIASH START
par <- list(
input = "resources_test/task_batch_integration/cxg_immune_cell_atlas/dataset.h5ad",
output = "output.h5ad"
)
meta <- list(
name = "stacas"
)
## VIASH END

cat("Reading input file\n")
adata <- anndata::read_h5ad(par[["input"]])

cat("Create Seurat object\n")
# Transpose because Seurat expects genes in rows, cells in columns
counts_r <- Matrix::t(adata$layers[["counts"]])
normalized_r <- Matrix::t(adata$layers[["normalized"]])
# Convert to a regular sparse matrix first and then to dgCMatrix
counts_c <- as(as(counts_r, "CsparseMatrix"), "dgCMatrix")
normalized_c <- as(as(normalized_r, "CsparseMatrix"), "dgCMatrix")

# Create Seurat object with raw counts, these are needed to compute Variable Genes
seurat_obj <- Seurat::CreateSeuratObject(counts = counts_c,
meta.data = adata$obs)
# Manually assign pre-normalized values to the "data" slot
seurat_obj@assays$RNA$data <- normalized_c

cat("Run STACAS\n")
object_integrated <- seurat_obj |>
Seurat::SplitObject(split.by = "batch") |>
STACAS::Run.STACAS()

cat("Store outputs\n")
output <- anndata::AnnData(
uns = list(
dataset_id = adata$uns[["dataset_id"]],
normalization_id = adata$uns[["normalization_id"]],
method_id = meta$name
),
obs = adata$obs,
var = adata$var,
obsm = list(
X_emb = object_integrated@reductions$pca@cell.embeddings
)
)

cat("Write output AnnData to file\n")
output$write_h5ad(par[["output"]], compression = "gzip")